SHIFTS IN MICROBIAL COMMUNITY STRUCTURE COULD BE LINKED TO WEATHER ANOMALIES? A CASE STUDY ON CACHAÇA (SUGARCANE DISTILLED SPIRIT) FERMENTATION

Autores

  • Cauré Barbosa Portugal Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo
  • Sandra Helena da Cruz Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo
  • Fernando Dini Andreote Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo

DOI:

https://doi.org/10.37856/bja.v95i1.3698

Resumo

Weather anomalies like high temperatures combined to long drought periods have frequently coincided with sluggish and spoiled fermentations in Brazilian cachaça distilleries. In this study, we compared the beginning of spontaneous fermentation in local processes to figure out which factors are distinctive and might be influencing fermentation in consecutive years with different weather conditions. We assessed two producing units in Southeast Brazil in 2013-2014, and daily analyzed two cases of spontaneous fermentation, considering molecular profile and the dynamics of microbial communities, as well as physicochemical parameters of the medium. Weather data were also collected. Atypical microbial community shifts and dominance of spoilage microorganisms were observed in 2014. The sugarcane juice also presented lower concentration of assimilable nitrogen in 2014 in association to lower ethanol yield. Compared to the last 20-year average, the rainfall was 7.5 times lower, in addition to general elevation of temperature (+ 3°C). Those bioprocesses influenced by lengthy droughts and higher temperatures disclose microbial communities defined by dominance and persistence of less demanding yeasts and overgrowth of bacterial populations. Also, the lack of nitrogen sources seems to be one of the major causes of biomass yield reduction, lagging sugar consumption by yeasts, and consequent spoilage activity.

Referências

ALCARDE, A. R., WALDER, J. M. M. & HORII, J. 2002. Effect of γ radiation on physiological parameters of the ethanolic fermentation. World Journal of Microbiology and Biotechnology, Amsterdam, v. 18, p. 41-48.

ASSIS, M. O., SANTOS, A. P. C., ROSA, C. A. & MAMEDE, M. E. D. O. 2014. Impact of a non-Saccharomyces yeast isolated in the Equatorial region in the acceptance of wine aroma. Food and Nutrition Sciences, London, v. 5, p. 759-769.

BELY, M., RINALDI, A. & DUBOURDIEU, D. 2003. Influence of assimilable nitrogen on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation. Journal of Bioscience and Bioengineering, Amsterdam, v. 96, p. 507-512.

BISSON, L. F. 1999. Stuck and sluggish fermentations. American Journal of Enology and Viticulture, Davis, v. 50, p. 107-119.

BOKULICH, N. A., THORNGATE, J. H., RICHARDSON, P. M. & MILLS, D. A. 2014. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proceedings of the National Academy of Sciences, Washington, v. 11, p. 139-148.

BOVO, B., ANDRIGHETTO, C., CARLOT, M., CORICH, V., LOMBARDI, A. & GIACOMINI, A. 2009. Yeast population dynamics during pilot-scale storage of grape marcs for the production of Grappa, a traditional Italian alcoholic beverage. International Journal of Food Microbiology, Amsterdam, v. 129, p. 221-228.

CALDAS, C. 1998. Manual de análises selecionadas para indústrias sucroalcooleiras. Maceió: Sindicato da Indústria do Açúcar e do Ãlcool do Estado de Alagoas. p. 424.

CARRAU, F., GAGGERO, C. & AGUILAR, P. S. 2015. Yeast diversity and native vigor for flavor phenotypes. Trends in Biotechnology, Amsterdam, v. 33, p. 148-154.

CULMAN, S. W., GAUCH, H. G., BLACKWOOD, C. B. & THIES, J. E. 2008. Analysis of T-RFLP data using analysis of variance and ordination methods: A comparative study. Journal of Microbiological Methods, Amsterdam, v. 75, p. 55-63.

DE SOUZA, R. S. C., OKURA, V. K., ARMANHI, J. S. L., JORRÃN, B., LOZANO, N., DA SILVA, M. J., GONZÃLEZ-GUERRERO, M., DE ARAÚJO, L. M., VERZA, N. C. & BAGHERI, H. C. 2016. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Scientific Reports, London, v. 6, p. 28774.

DU TOIT, M. & PRETORIUS, I. S. 2000. Microbial spoilage and preservation of wine: using weapons from nature's own arsenal - A review. South African Journal of Enology and Viticulture, Stellenbosch, v. 21, p. 74-96.

DURRER, A., GUMIERE, T., TAKETANI, R. G., COSTA, D. P. D., PEREIRA E SILVA, M. D. C. & ANDREOTE, F. D. 2017. The drivers underlying biogeographical patterns of bacterial communities in soils under sugarcane cultivation. Applied Soil Ecology, Amsterdam, v. 110, p. 12-20.

GARDES, M. & BRUNS, T. D. 1993. ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology, London, v. 2, p. 113-118.

GUMIERE, T., DURRER, A., BOHANNAN, B. J. M. & ANDREOTE, F. D. 2016. Biogeographical patterns in fungal communities from soils cultivated with sugarcane. Journal of Biogeography, New Jersey, v. 43, p. 2016-2026.

HAMMER, Ø., HARPER, D. A. T. & RYAN, P. D. 2001. Paleontological Statistics Software: Package for Education and Data Analysis. Palaeontologia Electronica, Austin, v. 4, p. 9.

HANNAH, L., ROEHRDANZ, P. R., IKEGAMI, M., SHEPARD, A. V., SHAW, M. R., TABOR, G., ZHI, L., MARQUET, P. A. & HIJMANS, R. J. 2013. Climate change, wine, and conservation. Proceedings of the National Academy of Sciences, Washington, v. 110, p. 6907-6912.

HUANG, Y.-C., EDWARDS, C. G., PETERSON, J. C. & HAAG, K. M. 1996. Relationship between sluggish fermentations and the antagonism of yeast by lactic acid bacteria. American Journal of Enology and Viticulture, Davis, v. 47, p. 1-10.

IAG/USP 2014. Boletim Climatológico Anual da Estação Meteorológica do IAG/USP. São Paulo: Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Univ. São Paulo.

KELKAR, S. & DOLAN, K. 2012. Modeling the effects of initial nitrogen content and temperature on fermentation kinetics of hard cider. Journal of Food Engineering, Amsterdam, v. 109, p. 588-596.

KURTZMAN, C. & ROBNETT, D. J. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek, Amsterdam, 73, 331-371.

LEA, A. G. & PIGGOTT, J. R. 2003. Fermented beverage production. New York: Springer Science & Business Media, p. 335-344.

MARIN, F. & NASSIF, D. S. P. 2013. Climate change and the sugarcane in Brazilian: physiology, conjuncture and future scenario. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 17, p. 232-239.

MARTIN, V., BOIDO, E., GIORELLO, F., MAS, A., DELLACASSA, E. & CARRAU, F. 2016. Effect of yeast assimilable nitrogen on the synthesis of phenolic aroma compounds by Hanseniaspora vineae strains. Yeast, Oxford, v. 33, p. 323–328.

MARTÃNEZ-MORENO, R., MORALES, P., GONZALEZ, R., MAS, A. & BELTRAN, G. 2012. Biomass production and alcoholic fermentation performance of Saccharomyces cerevisiae as a function of nitrogen source. FEMS Yeast Research, Oxford, v. 12, p. 477-485.

MEDINA, K., BOIDO, E., DELLACASSA, E. & CARRAU, F. 2012. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation. International Journal of Food Microbiology, Amsterdam, v.157, p. 245-250.

MEDINA, K., BOIDO, E., FARIÑA, L., GIOIA, O., GOMEZ, M. E., BARQUET, M., GAGGERO, C., DELLACASSA, E. & CARRAU, F. 2013. Increased flavour diversity of Chardonnay wines by spontaneous fermentation and co-fermentation with Hanseniaspora vineae. Food Chemistry, Amsterdam, v.141, p. 2513-2521.

MILLER, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, Washington, v. 31, p. 426-428.

MORAIS, P. B., ROSA, C. A., LINARDI, V. R., PATARO, C. & MAIA, A. B. R. A. 1997. Characterization and succession of yeast populations associated with spontaneous fermentations during the production of Brazilian sugar-cane aguardente. World Journal of Microbiology and Biotechnology, New York, v. 13, p. 241-243.

MUNOZ, E. & INGLEDEW, W. M. 1989. Effect of yeast hulls on stuck and sluggish wine fermentations: importance of the lipid component. Applied and Environmental Microbiology, Washington, v. 55, p. 1560-1564.

PAPALEXANDRATOU, Z., LEFEBER, T., BAHRIM, B., LEE, O. S., DANIEL, H.-M. & DE VUYST, L. 2013. Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus predominate during well-performed Malaysian cocoa bean box fermentations, underlining the importance of these microbial species for a successful cocoa bean fermentation process. Food Microbiology, Amsterdam, v. 35, p. 73-85.

PORTUGAL, C. B., ALCARDE, A. R., BORTOLETTO, A. M. & DE SILVA, A. P. 2016. The role of spontaneous fermentation for the production of cachaça: a study of case. European Food Research and Technology, Berlin, v. 242, p. 1587–1597.

PORTUGAL, C. B., DE SILVA, A. P., BORTOLETTO, A. M. & ALCARDE, A. R. 2017. How native yeasts may influence the chemical profile of the Brazilian spirit, cachaça? Food Research International, Burlington, v. 91, p. 18-25.

REIS JÚNIOR, F., SILVA, M., TEIXEIRA, K., URQUIAGA, S. & REIS, V. 2004. Identificação de isolados de Azospirillum amazonense associados a Brachiaria spp., em diferentes épocas e condições de cultivo e produção de fitormônio pela bactéria. Revista Brasileira de Ciência do Solo, Viçosa, v. 28, p. 103-113.

SENGAR, K., SENGAR, R. S., LAL, K. & RAO, V. P. 2014. Climate change effect on sugarcane productivity. In: SENGAR, R. S. & SENGAR, K. (eds.) Climate change effect on crop productivity. Florida: CRC Press, p. 177-185.

SILVA, C. L. C., VIANNA, C. R., CADETE, R. M., SANTOS, R. O., GOMES, F. C. O., OLIVEIRA, E. S. & ROSA, C. A. 2009. Selection, growth, and chemo-sensory evaluation of flocculent starter culture strains of Saccharomyces cerevisiae in the large-scale production of traditional Brazilian cachaça. International Journal of Food Microbiology, Amsterdam, v. 131, p. 203-210.

SINGELS, A., JONES, M., MARIN, F., RUANE, A. & THORBURN, P. 2014. Predicting climate change impacts on sugarcane production at sites in Australia, Brazil and South Africa using the Canegro model. Sugar Tech, New Delhi, v. 16, p. 347-355.

VERDENAL, T., ZUFFEREY, V., BURGOS, S., RÖSTI, J., LORENZINI, F., DIENES-NAGY, A., GINDRO, K., SPRING, J.-L. & VIRET, O. 2014. The effect of pedoclimatic conditions on the yeast assimilable nitrogen concentration on white cv. Doral in Switzerland. In: XII INTERNATIONAL TERROIR, Tokaj, 07-10 July, 2014. Proceedings.

CONGRESSO BRASILEIRO DE MELHORAMENTO DE PLANTAS, 1., Goiânia, GO, 03 a 06 de abril, 2001. Anais. Goiânia: Embrapa Arroz e Feijão. (Embrapa Arroz e Feijão. Documentos, 113).

VERDI, A. R., 2006. Dinâmicas e perspectivas do mercado da cachaça. Informações Econômicas, São Paulo, v. 36, p. 93-98.

VIANA, F., GIL, J. V., GENOVÉS, S., VALLÉS, S. & MANZANARES, P. 2008. Rational selection of non-Saccharomyces wine yeasts for mixed starters based on ester formation and enological traits. Food Microbiology, Amsterdam, v. 25, n. 6, p. 778-785.

VIDAL, E. E., DE BILLERBECK, G. M., SIMÕES, D. A., SCHULER, A., FRANÇOIS, J. M. & DE MORAIS JR, M. A. 2013. Influence of nitrogen supply on the production of higher alcohols/esters and expression of flavour-related genes in cachaça fermentation. Food Chemistry, Amsterdam, v. 138, p. 701-708.

WANG, C. & LIU, Y. 2013. Dynamic study of yeast species and Saccharomyces cerevisiae strains during the spontaneous fermentations of Muscat blanc in Jingyang, China. Food Microbiology, Amsterdam, v. 33, p. 172-177.

WHITE, T., BRUNS, T., LEE, S. & TAYLOR, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: INNIS, M., GELFAND, D., SHINSKY, J. & WHITE, T. (eds.) PCR Protocols: A Guide to Methods and Applications. San Diego: Academic Press, p. 315-324.

ZOECKLEIN, B. W., FUGELSANG, K. C. & GUMP, B. H. 1995. Wine analysis and production. Bruxels: Kluwer Academic Publishers, p. 474-477.

ZOGG, G. P., ZAK, D. R., RINGELBERG, D. B., WHITE, D. C., MACDONALD, N. W. & PREGITZER, K. S. 1997. Compositional and functional shifts in microbial communities due to soil warming. Soil Science Society of America Journal, Madison, v. 61, p. 475-481.

Downloads

Publicado

2020-04-30

Edição

Seção

Artigos