ORBITAL IMAGES FOR SPATIAL AND TEMPORAL CHARACTERIZATION OF VINEYARD BY VEGETATION INDEX IN THE "CAMPANHA GAÚCHA" WINE REGION, BRAZIL
DOI:
https://doi.org/10.37856/bja.v97i1.4292Resumo
Remote sensing has become an important technique for spatial characterization and agricultural monitoring, in order to improve wine development and reduce production costs. The wine region of the “Campanha Gaúchaâ€, Brazil, was recognized in 2020 as an Indication of Origin for quality wines. This study analyzed orbital data in a “Cabernet sauvignon†vineyard in the municipality of Santana do Livramento. From the images of the Planet and Sentinel-2 satellites, the Normalized Difference Vegetation Index (NDVI) was evaluated, as well as its viability in viticulture in the region. Twelve images from each satellite were analyzed using digital image processing techniques, average NDVI temporal profiles were generated and analyzed by statistical methods. The generated maps produced zoning for each scene over the period studied, for both satellite images. The results showed that the two satellites were suitable for use in monitoring vineyards, due to their excellent temporal, spatial and radiometric resolution.Referências
Almeida, R. V. J.; Araújo, M. D. O. G.; Silva, A. C.; Senna, J. A. Comparison of Atmospheric Correction Methods: â€6S†and “DOS†processed in data from the TM / Landsat 5 sensor and corresponding to the region of occurrence of Pd-F bog. In: Brazilian Symposium on Remote Sensing, 17, 2015. João Pessoa, Electronic Proceedings of the XVII Brazilian Symposium on Remote Sensing - SBSR João Pessoa: INPE, 2015. [Text in Portuguese]. Available at: <http://www.dsr.inpe.br/sbsr2015/files/p1503.pdf>. Accessed on 2019-03-19.
Andriotti. J. L. S. Fundamentals of statistics and geostatistics. 1st. ed. [Text in Portuguese]. São Leopoldo: Editora Unisinos, 2005, 166 p.
Barbosa, K. M. N. Spatial monitoring of biomass and organic carbon of lowland herbaceous vegetation in Central Amazonia, 2006, 131 f. Thesis (Doctorate in Forest Sciences) - Graduate Program in Forest Engineering, Federal University of Paraná (UFPR). Curitiba, 2006. [Text in Portuguese]. Available at: <https://acervodigital.ufpr.br/bitstream/handle/1884/4450/TESE_ KMNB_06jun2006.pdf?sequence=1&isAllowed=y> Accessed on 2019-03-20.
Batista, F. L. Remote Sensing, Vegetation Indexes and Precision Agriculture [Text in Portuguese]. Santa Maria, 2017. Available at: < https://www.austertecnologia.com/single-post/2017/05/27/Sensoriamento-Remoto-%C3%8Dndices-de-Vegeta%C3%A7%C3%A3o-e-Agricultura-de-Precis%C3%A3o>. Accessed on 2019-04-20.
Bernardi, A. C. C.. [et al.] technical publishers. Precision agriculture: results of a new look. 1st. ed. BrasÃlia: EMBRAPA, 2014. [Text in Portuguese] Available at: <https://ainfo.cnptia.embrapa.br/digital/bitstream/item/113993/1/Agricultura-de-precisao-2014.pdf> Accessed on 2019-04-22.
Bombassaro. M. G. Classification and shading effects on vines determined from ASTER images. 2011. Dissertation (Master in Remote Sensing) - Postgraduate Program in Remote Sensing, Federal University of Rio Grande do Sul (UFRS). Porto Alegre, 2011. [Text in Portuguese] Available at: < https://www.lume.ufrgs.br/handle/10183/39080 > Accessed on 2019-04-29.
Campos, M. S. Unraveling MINITAB. 1st. ed. Rio de Janeiro: Qualitymark. 2003. [Text in Portuguese]
Chavez Jr, P. S. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, Volume 24, Issue 3, April 1988, Pages 459-479. Available at: <https://www.sciencedirect.com/science/article/pii/0034425788900193> Accessed on 2019-05-22.
Congedo, L. (2016). Semi-Automatic Classification Plugin Documentation. Available at: <https://www.academia.edu/35886696/Semi_Automatic_Classification_Plugin_Documentation_Release_6_0_1_1> Accessed on 2019-05-25.
Crósta, A. P. Digital processing of remote sensing images. ed. rev. Campinas: UNICAMP / Institute of Geosciences, 1992. 170 p. [Text in Portuguese]
Drissi, R.; Goutouly, J. P.; Forget, D; Gaudillere, J. P. Nondestructive Measurament of Grapevine Leaf Area by Ground Normalized Difference Vegetation Index, Agronomy Journal – SPATIAL VARIABILITY. Madison. v. 101. n. 1. p. 226-231. jan. 2009. Available at: <https://acsess.onlinelibrary.wiley.com/doi/full/10.2134/agronj2007.0167> Accessed on 2019-06-27.
Embrapa – Brazilian Agricultural Research Corporation. Embrapa in Brazilian Biomes. 2006. BrasÃlia. 16 p. Il. Color. [Text in Portuguese] Available at: <https://ainfo.cnptia.embrapa.br/digital/bitstream/item/82598/1/a-embrapa-nos-biomas-brasileiros.pdf> Accessed on 2019-06-27.
ESA - European Space Agency. Sentinel-2 User Handbook. [S.l.]. jul. 2015. DisponÃvel em: < https://sentinels.copernicus.eu/web/sentinel/user-guides/document-library/-/asset_publisher/xlslt4309D5h/content/sentinel-2-user-handbook >. Accessed on 2019-04-27.
ESRI. Resample. [S.l.]. 2018. Available at: <https://pro.arcgis.com/en/pro-app/tool-reference/data-management/resample.htm>. Accessed on 2019-04-27.
Field, A. Discovering statistics using SPSS [electronic resource]
/ Andy Field; translation Lorà Viali. - 2. ed. - Electronic data. -
Porto Alegre: Artmed, 2009. [Text in Portuguese]
Hoff, R.; Farias, A. R.; Ducati, J. R.; Toniolo, G. R. Application of digital processing of orbital images and GIS to support precision agriculture in vine and apple crops in Rio Grande do Sul. In: INAMASU. Ricardo Yassushi. Precision Agriculture: A New Look. 1st. ed. São Carlos. SP: EMBRAPA Instrumentation. 2011. p. 273-276. [Text in Portuguese] Available at: <https://ainfo.cnptia.embrapa.br/digital/bitstream/item/55013/1/HOFF-AgriculturadePrecisao-2011.pdf> Accessed on 2019-03-27.
Jensen, J. R. Remote Sensing of the Environment: A Perspective on Terrestrial Resources. 3. ed. Upper Saddle River. NJ: Pearson. 2005. [Text in Portuguese] Available at: <http://mtc-m16d.sid.inpe.br/col/sid.inpe.br/mtc-m19/2011/04.01.14.00/doc/jensen.pdf> Accessed on 2019-02-26.
Johnson, L. F.; Roczen, D.E.; Youkhana, S.K.; Nemani, R.R.; Bosch, D.F. Mapping vineyard leaf area with multispectral satellite imagery. Computer and Eletronics in Agriculture. [S.l.]. n. 38. p. 33-44. 2003. Available: <https://www.sciencedirect.com/science/article/pii/S0168169902001060> Accessed on 2019-07-25.
Junges, A. H.; Fontana, D. C.; Anzanello, R.; Bremm, C. Normalized difference vegetation index obtained by ground-based remote sensing to characterize vine cycle in Rio Grande do Sul. Brazil. Ciência e Agrotecnologia. v. 41. n. 5. p. 543-553. 2017b. Available at: <http://www.scielo.br/pdf/cagro/v41n5/1981-1829-cagro-41-05-543.pdf> Accessed on 2019-06-10.
Junges, A. H.; Pauletto, H.; Hoff, R.; Ducati, J. R.; Alberti, R. Landsat Images for Vineyard Monitoring in the “Campanha Gaúcha†Region by Temporal Profile of NDVI. In: BRAZILIAN SYMPOSIUM OF REMOTE SENSING. XIX .. 2019a. Santos. Electronic Proceedings ... Santos: INPE. 2019a. [Text in Portuguese] Available at: <http://marte2.sid.inpe.br/rep/sid.inpe.br/marte2/2019/10.25.15.14>. Accessed on 2019-06-10.
Junges, A. H.; Pauletto, H.; Alberti, R.; Hoff, R.; Ducati, J. R. Orbital Remote Sensing to Monitoring Vine Cycle Using Vegetation Index in Campanha Region. Rio Grande do Sul. Brasil. In: 20° GiESCO International Meeting. 2017a. Mendoza. Argentina. Book of full manuscripts. Mendoza: GIESCO. 2017. p. 826-830. [Text in Portuguese] Available at: <https://www.giesco.org/article-orbital-remote-sensing-to-monitoring-vine-cycleusing-vegetation-index-in-%E2%80%9Ccampanha-region%E2%80%9D-riogrande-do-sul-state-brazilteledectection-orbital-pour-la-surveillance-du-cycle-de-la-vignepar-859.html> Accessed on 2019-10-10.
Junges. A. H.; Fontana, D. C.; Lampugnani, C. S. Relationship between the normalized difference vegetation index and leaf area in vineyards. Bragantia. Campinas. ahead of print. 2019b. Available at: <http://www.scielo.br/scielo.php?script=sci_issuetoc&pid=0006-870520190050&lng=en&nrm=iso>. Accessed on 2019-10-20.
Matese, A.; Toscano, P.; Di Gennaro, S.; Genesio, L.; Vaccari, F.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B.. Intercomparasion of UAV. Aircraft and Satellite Remote Sensing Plataforms for Precision Viticulture. MDPI Remote Sensing. Basel. v. 7. n. 3. 317. mar. 2015. Available at: <https://www.mdpi.com/2072-4292/7/3/297> Accessed on 2020-02-26.
Mello, L. M. R.; Machado. C. A. E. Viticultural Register - RS (2013-2015). 2017. [Text in Portuguese] Available at: <http://www.cnpuv.embrapa.br/cadastro-viticola/rs-2013-2015/dados/home.html>Accessed on 2020-02-28.
Meneses. P. R.; Almeida. T. (Org.). Introduction to remote sensing image processing. Brasilia. DF: UNB / CNPq. 2012. 276 p. [Text in Portuguese]. Available at: <http://memoria.cnpq.br/documents/10157/56b578c4-0fd5-4b9f-b82a-e9693e4f69d8> Accessed on 2020-03-22.
Miele, A.; Flores, C. A.; Filipinni Alba, J. M. Current status of precision viticulture research in Rio Grande do Sul: first results from UP Grape for Wine. In: Inamasu. Ricardo Yassushi. Agricultura de precisão: Um Novo Olhar. 1º. ed. São Carlos. SP: EMBRAPA Instrumentação. 2011. p. 267-272. [Text in Portuguese]. Available at: <https://ainfo.cnptia.embrapa.br/digital/bitstream/item/55015/1/MIELE-Um-Novo-Olhar-Embrapa.pdf> Accessed on 2019-04-27.
Miele, A.; Mandelli, F. 3 DRIVING SYSTEMS OF VINE: trellis and espalier. Bento Gonçalves. EMBRAPA 2003. [Text in Portuguese]. Available at: <https://ainfo.cnptia.embrapa.br/digital/bitstream/item/152924/1/Manual-3-Capitulo-3.pdf>. Accessed on 2019-04-27.
Miolo, The world Miolo Wine Group. Bento Gonçalves. 2018. [Text in Portuguese]. Available at: <http://www.miolo.com.br/o-grupo/>. Accessed on 2019-04-27.
Molin, P .; Amaral, L. R .; Colaço, A. F. Precision agriculture. 1st. ed. São Paulo: Oficina de Textos. 2015, 40 p. [Text in Portuguese]. Available at: <https://www.bibliotecaagptea.org.br/agricultura/precisao/livros/AGRICULTURA%20DE%20PRECISAO%20-%20OFICINA%20DE%20TEXTOS.pdf>. Accessed on 2020-04-04.
Osco, L. P.; Marcato Junior, J.; Ramos, .A. P. M.; Creste, J. E. Comparison between vegetation indices obtained by different atmospheric correction models for the evaluation of biomass in pear oranges. In: IV Brazilian Symposium on Geomatics - SBG2017. 2017. Presidente Prudente. Electronic Proceedings, Presidente Prudente: UNESP. 2017. [Text in Portuguese]. Available at: <http://docs.fct.unesp.br/departamentos/cartografia/eventos/2017_IV_SBG/index_Artigos.htm>. . Accessed on 2019-04-12.
Pauletto, H. 2019. Evaluation of images of different spatial resolutions to characterize the temporal space of the NDVI vegetation index in a vineyard in the “Campanha Gaúcha†region. Graduation work in Geology. 86 p. UNISINOS. São Leopoldo. [Text in Portuguese].
Pauletto, H.; Junges, A. H.; Hoff, R.Medium and high spatial resolution images to support precision viticulture: variability of the vegetation index by normalized difference in vineyards in the Campanha region. Brazil. In: 16th MEETING OF SCIENTIFIC INITIATION AND 12th MEETING OF POSTGRADUATE OF EMBRAPA GRAPE AND WINE. 2018. Bento Gonçalves. Electronic Proceedings ... Bento Gonçalves: EMBRAPA Grape and Wine. 2018. [Text in Portuguese]. Available at: < https://www.infoteca.cnptia.EMBRAPA.br/infoteca/handle/doc/1096571>. Accessed on 2019-04-10.
Pauletto, H.; Junges, A. H.; Hoff, R. Normalized Difference Vegetation Index (NDVI) in monitoring the grapevine cycle using orbital images to support precision agriculture in the Campaign region. Brazil. In: 15th Scientific Initiation Meeting 11th POSTGRADUATION MEETING OF EMBRAPA GRAPE AND WINE. 2017. Bento Gonçalves. Electronic Proceedings ... Bento Gonçalves: EMBRAPA Grape and Wine. 2017. [Text in Portuguese]. Available at: <https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1073614>. Accessed on 2019-04-10.
Pauletto, H.; Junges, A. H.; Hoff, R.; Valenti, E. S. 2019. Evaluation of images of different spatial resolutions to characterize the NDVI vegetation index in a vineyard in the Campanha region. Brazil. In: SCIENTIFIC INITIATION MEETING. 17 .. POSTGRADUATION MEETING OF EMBRAPA GRAPE AND WINE. 13 .. 2019. Bento Gonçalves. Anais ... Bento Gonçalves: Embrapa Uva e Vinho. July 18 and 19, 2019. (Embrapa Uva e Vinho. Documents. 115). Summary 07. [Text in Portuguese]. Available at: <http://ainfo.cnptia.embrapa.br/digital/bitstream/item/201116/1/ANAIS-17IC2019-resumo07.pdf> Accessed on 2019-04-10.
Pithan, P. A.; Junges, A. H.; Farias, A. R.; Anzanello, R.; Hoff, R. Monitoring of the grapevine cycle by the Normalized Difference Vegetation index obtained from Landsat 8 images in the municipality of Veranópolis - RS. Brazil. In: Brazilian Symposium on Remote Sensing. 17 .. 2015. João Pessoa. Electronic Proceedings ... João Pessoa: INPE. 2015. [Text in Portuguese]. Available at: < <http://marte2.sid.inpe.br/col/sid.inpe.br/marte2/2015/05.31.21.54/doc/goto/sid.inpe.br/marte2/2015/06.15.15.13.15> Accessed on 2019-05-11.
PLANET LABS. Planet imagery product specifications. [S.l.]. Aug. 2018. DisponÃvel em: < https://www.planet.com/products/planet-imagery/> Accessed on 2018-11-11.
PLANET. Education and Research Program. [S.l.. 2019b?]. Available at: <https://www.planet.com/markets/education-and-research/>. Accessed on 2018-11-11.
Ponzoni, F. J. Spectral behavior of vegetation. In: Meneses P. R. e Netto. J. S. M. (Orgs.). Remote sensing. Reflectance of natural targets. BrasÃlia: UNB/EMBRAPA CERRADOS. 2001. p. 157-199. [Text in Portuguese].
Ponzoni, F. J.; Shimabukuro, Y. E.; Kuplich, T. M. Remote sensing of vegetation. 2. ed. São Paulo: Oficina de Textos. 2012. [Text in Portuguese].
Pringle M.J; McBratney A.B.; Whelan B.M.; Taylor J.A. A preliminary approach to assessing the opportunity for site-specific crop management in a field, using yield monitor data. Agricultural Systems. [S.l.]. v. 76. n 1. apr 2003. p 273-292. Available at: <https://www.sciencedirect.com/science/article/pii/S0308521X02000057>. Accessed on 2019-11-10.
Protas, J. F. S.; Camargo, U. A. Brazilian viticulture: sectorial panorama of 2010. 1. ed. Brasilia. DF: SEBRAE; Bento Gonçalves: SEBRAE: IBRAVIN: EMBRAPA. 2011. [Text in Portuguese]. Available at: <https://www.infoteca.cnptia.embrapa.br/bitstream/doc/922116/1/PROTASpanoramavitivinicultura2010.pdf> Accessed on 2020-10-20.
Revista Rural. Wine from the “Campanha Gaúcha†wins Geographical Indication. 03/06/2020. On-line. [Text in Portuguese]. Available at: <https://www.revistarural.com.br/2020/06/03/vinho-da-campanha-gaucha-conquista-indicacao-geografica/> Accessed on 2020-10-25.
Schaparini, L. P.; Fontana, D. C.; Junges, A. H. Landsat 8 / OLI images to characterize the temporal evolution of vegetation indexes in vineyards conducted in trellis and espalier systems in the Serra Gaúcha region. Rio Grande do Sul, Brasil. In: BRAZILIAN SYMPOSIUM OF REMOTE SENSING. 18 .. 2017. Santos. Electronic Proceedings ... Santos: INPE. 2017. [Text in Portuguese]. Available at: <https://proceedings.galoa.com.br/sbsr/trabalhos/ imagens-landsat-8oli-para-caracterizacao-da-evolucao-temporal-de-indices-de-vegetacao-em-vinhedos?lang=pt-br>. Accessed on 2019-10-10.
Spiegel, M. R. Statistic. 3 ed. São Paulo. Pearson Education do Brasil. 1994. [Text in Portuguese].
Sun, L. et al. Daily Mapping of 30 m LAI and NDVI for Grape Yield Prediction in California Vineyards. MDPI Remote Sensing. Basel. v. 9. n. 4. 317. mar. 2017. Available at: <https://www.mdpi.com/2072-4292/9/4/317> Accessed on 2019-10-20.
Vinhos da Campanha. Terroir. 2018. [Text in Portuguese]. Available at: . Accessed on 2019-10-20.
Weier, J.; Herring, D. Measuring Vegetation (NDVI & EVI). [S.l.]. 2000. Available at: <https://earthobservatory.nasa.gov/Features/Measuring Vegetation/measuring_vegetation_1.php>. Accessed on 2018-10-21.
Weiss, C. V. C.; Camargo, D. C. S.; Rosca, E. H.; Espinoza, J. Comparative analysis between atmospheric correction methods in Landsat 8 Opertational Land Imager (OLI) sensor images. Scientia Plena. [S.l.]. v. 11. n. 2. fev. 2015. [Text in Portuguese]. Available at: < https://www.scientiaplena.org.br/sp/article/view/17417>. Accessed on 2020-10-29.