PERFORMANCE OF SIMPLE LINEAR REGRESSION ANALYSIS UNDER A RANDOMIZED COMPLETE BLOCK DESIGN

Autores

  • Daibou Alassane Universidade Federal de Viçosa
  • Alice dos Santos Ribeiro Federal University of Viçosa
  • José Ivo Ribeiro Júnior Federal University of Viçosa
  • Jaqueline Akemi S. Sediyama Federal University of Viçosa
  • Belo Afonso Muetanene Faculty of Agronomic Sciences

DOI:

https://doi.org/10.37856/bja.v98i1.4329

Resumo

In experiments conducted under a randomized complete block design, the fitting of the simple linear regression model can be performed under different combinations of the number of treatments and the number of replications. To determine the best combination, considering the same number of experimental units, it was concluded through a data simulation study that the quality of the fit increases when regression is performed in experiments with fewer treatments and more replications. Therefore, if linearity is expected, it is recommended to use two treatments for model fitting. Otherwise, three treatments are recommended. This applies to experiments with coefficients of variation between 10% and 30%.

Referências

BAHRY, C. A.; VENSKE, E.; NARDINO, M.; FIN, S. S.; ZIMMER, P. D.; SOUZA, V. Q.; CARON, B. O. Características morfológicas e componentes de rendimento da soja submetida à adubação nitrogenada. Revista Agrarian, v. 6, p. 281-288, 2013.

BONILLA, J. A. Métodos quantitativos. Belo Horizonte: Editora Líttera Maciel, 1995. 249 p.

BOX, G. E. P.; DRAPER, N. R. Empirical model – building and response surfaces. New York: John Wiley & Sons, 1987. 669 p.

CAMPOS, H. Aspectos da aplicação das superfícies de resposta a ensaios fatoriais 33 de adubação. Piracicaba: teste de doutorado – ESALQ/USP, 1967. 82 p.

DRAPER, N. R.; SMITH, H. Applied regression analysis. 3. ed. New York: John Wiley & Sons, 1998. 693 p.

GOMES, F. P. Curso de estatística experimental. 15. ed. São Paulo: Livraria Universo Agrícola, 2009. 451 p.

HOFFMANN, R.; VIEIRA, S. Análise de regressão: uma introdução à econometria. 2. ed. São Paulo: Hucitec, 1983. 379 p.

LIMA, P. C.; ABREU, A. R. Delineamento e análise de experimentos. Lavras: FAEPE, 2000. 45 p.

MATEUS, N. B.; BARBIN D.; CONAGIN, A. O delineamento composto central e sua viabilidade de uso em algumas áreas de pesquisa. Revista Acta Scientiarum, v. 23, p. 1537-1546, 2001.

MONTGOMERY, D. C. Design and analysis of experiments. 7. ed. New York: John Wiley & Sons, 2009. 656 p.

MONTGOMERY, D. C.; RUNGER, G. C. Estatística aplicada e probabilidade para engenheiros. 5. ed. Rio de Janeiro: LTC, 2012. 521 p.

MYERS, R. H.; MONTGOMERY, D. C.; ANDERSON-COOK, C. M. Response surface methodology: process and product optimization using designed experiments. 3. ed. New Jersey: John Wiley & Sons, 2009. 680 p.

POSSATO JUNIOR, O.; BERTAGNA, F. A. B.; PETERLINI, E.; BALERONI, A. G.; ROSSI, R. M.; ZENI NETO, H. Survey of statistical methods applied in articles published in Acta Scientiarum. Acta Scientiarum. Agronomy, 2019. 10 p.

R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2020. URL https://www.r-project.org.

SHIEH, G.; JAN, S. L. The effectiveness of randomized complete block design. Neerdanda: Statistica Neerlandica, 2004. 124 p.

WERKEMA, M. C. C.; AGUIAR, S. Análise de regressão: como entender o relacionamento entre as variáveis de um processo. Belo Horizonte: Werkema Editora, 2006. 306 p.

ZEVIANE, W. M. Manual de planejamento e análise de experimentos com R. Curitiba: UFPR, 2011. 276 p.

Downloads

Publicado

2023-06-15

Edição

Seção

Artigos