INFLUENCE OF ELEVATED COâ‚‚ ON AGRICULTURAL SYSTEMS: A REVIEW
DOI:
https://doi.org/10.37856/bja.v95i2.3977Abstract
Agriculture constitutes the second largest biome on Earth’s surface and is responsible for a third of the world’s net primary production. Carbon dioxide (CO2) is directly linked to the primary production of ecosystems through its major role in photosynthesis. CO2 levels on Earth’s atmosphere have increased substantially since the Industrial Revolution and increase at a rate of 3.2 ppm per year. Along with such rises, shifts in precipitation patterns and global annual temperature averages have occurred, which might affect food production worldwide. The present work aimed at assessing how elevated CO2 concentrations affect net accumulation of carbon in this biome, increasing net photosynthesis and nitrogen- and water-use efficiency. Interactions among elevated atmospheric CO2, temperature and precipitation – major climate parameters driving current changes - are discussed, as well as means by which crop physiological responses to elevated CO2 can help mitigate some of the deleterious effects predicted in many agricultural systems worldwideReferences
AINSWORTH, E.A., LONG, S. P., 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, v. 165, p. 351-371.
ALTIERI, M. A., 2009. Agroecology, Small Farms, and Food Sovereignty. Monthly Review-an Independent Socialist Magazine, v. 61, p. 102-113.
BLOOM, A. J., BURGER, M. RUBIO-ASENSIO, J. S., COUSINS, A. B., 2010. Carbon Dioxide Enrichment Inhibits Nitrate Assimilation in Wheat and Arabidopsis. Science, Washington DC, v. 328, p. 899-903.
BOOKER, F. L., FISCUS, E. L., MILLER, J. E., 2004. Combined effects of elevated atmospheric carbon dioxide and ozone on soybean whole-plant water use. Environmental Management, v. 33, p. S355-S362.
CHAPIN, F. S. I., MATSON, P. A., MOONEY, H., 2002. Principles of terrestrial ecosystem ecology. Springer-Verlag, New York, New York.
CONDON, A. G., RICHARDS, R. A., REBETZKE, G. J., FARQUAR, G. D., 2004. Breeding for high water-use efficiency. Journal of Experimental Botany, v. 55, p. 2447-2460.
CONLEY, M. M., KIMBALL, B. A., BROOKS, T. J., PINTER, P. J., HUNSAKER, D. J., WALL, G. W., ADAM, N. R., LAMORTE, R. A., MATTHIAS, A. D., THOMPSON, T. L., LEAVITT, S. W., OTTMAN, M. J., COUSINS, A. B., TRIGGS, J. M., 2001. CO2 enrichment increases water-use efficiency in Sorghum. New Phytologist, v. 151, p. 407-412.
COUSINS, A. B., BLOOM, A. J., 2003. Influence of elevated CO2 and nitrogen nutrition on photosynthesis and nitrate photo-assimilation in maize (Zea mays L.). Plant Cell and Environment, v. 26, p. 1525-1530.
DE SOUZA, A. P., GASPAR, M., DA SILVA, E. A., ULIAN, E. C., WACLAWOVSKY, A. J., NISHIYAMA, M. Y., DOS SANTOS, R. V., TEIXEIRA, M. M., SOUZA, G. M., BUCKERIDGE, M. S., 2008. Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. Plant Cell and Environment, v. 31, p. 1116-1127.
DORA, V., ORSOLYA, S., SZILARD, C., ZITA, D., MIHALY, Z., 2010. Study of secondary succession on recently abandoned fields, with special attention to their weed relations. Novenyvdelem, v. 46, p. 109-116.
DRAKE, B. G., GONZALEZ-MELER, M. A., LONG, S. P., 1997. More efficient plants: A consequence of rising atmospheric CO2? Pages 609-639 in R. L. Jones, editor. Annual Review of Plant Physiology and Plant Molecular Biology. Annual Reviews Inc.
ELLIS, E. C., RAMANKUTTY, N., 2008. Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment. Pages 439-447.
ERBS, M., MANDERSCHEID, R., JANSEN, G., SEDDIG, S., PACHOLSKI, A., WEIGEL, H. J., 2010. Effects of free-air CO2 enrichment and nitrogen supply on grain quality parameters and elemental composition of wheat and barley grown in a crop rotation. Agriculture Ecosystems & Environment, v. 136, p. 59-68.
FOYER, C. H., BLOOM, A. J., QUEVAL, G., NOCTOR, G., 2009. Photorespiratory Metabolism: Genes, Mutants, Energetics, and Redox Signaling. Annual Review of Plant Biology, v. 60, p. 455-484.
GONZALEZMELER, M. A., RIBAS-CARBO, N., SIEDOW, J. N., DRAKE, B. G., 1996. Direct inhibition of plant mitochondrial respiration by elevated CO2. Plant Physiology, Rockville, v. 112, p. 1349-1355.
HEAP, I., 2020. The international survey of herbicide resistant weeds. Online. Internet. Available at www.weedscience.org.
HOGY, P., KECK, M., NIEHAUS, K., FRANZARING, J., FANGMEIER, A., 2010. Effects of atmospheric CO2 enrichment on biomass, yield and low molecular weight metabolites in wheat grain. Journal of Cereal Science, v. 52, p. 215-220.
HOGY, P., WIESER, H., KOEHLER, P., SCHWADORF, K., BREUER, J., FRANZARING, J., MUNTIFERING, R., FANGMEIER, A., 2009. Effects of elevated CO2 on grain yield and quality of wheat: results from a 3-year free-air CO2 enrichment experiment. Plant Biology, Stuttgart, v. 11, p. 60-69.
KIM, S. H., GITZ, D. C., SICHERB, R. C., BAKER, J. T., TIMLIN, D. J., REDDY, V. R., 2007. Temperature dependence of growth, development, and photosynthesis in maize under elevated CO2. Environmental and Experimental Botany, v. 61, p. 224-236.
KIMBALL, B. A., 1983 Carbon dioxide and agricultural yield an assemblage and analysis of 430 prior observations. Agronomy Journal, v. 75, p. 779-788.
KIMBALL, B. A., KOBAYASHI, K., BINDI, M., 2002. Responses of agricultural crops to free-air CO2 enrichment. Advances in Agronomy, v. 77, p. 293-368.
LAL, R., 2003. Offsetting global CO2 emissions by restoration of degraded soils and intensification of world agriculture and forestry. Land Degradation & Development, v. 14, p. 309-322.
LEAKEY, A. D. B., BERNACCHI, C. J., LONG, S. P., ORT, D. R., 2005. Elevated CO2 does not stimulate C4 photosynthesis directly, but impacts water relations and indirectly enhances carbon gain during drought stress in maize (Zea mays) grown under free-air CO2 enrichment (FACE). Comparative Biochemistry and Physiology Part A Molecular & Integrative Physiology, v. 141, p. S305-S306.
LINDSEY, R. Climate change: atmospheric carbon dioxide. Climate.gov – science & information for a climate-smart nation. Available at https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide.
LI, L., NIELSEN, D. C., YU, Q., MA, L., AHUJA, L. R., 2010. Evaluating the Crop Water Stress Index and its correlation with latent heat and CO2 fluxes over winter wheat and maize in the North China plain. Agricultural Water Management, v. 97, p. 1146-1155.
LLOYD, J., FARQUHAR, G. D., 1996. The CO2 dependence of photosynthesis, plant growth responses to elevated atmospheric CO2 concentrations and their interaction with soil nutrient status. I. General principles and forest ecosystems. Functional Ecology, v. 10, p. 4-32.
LONG, S. P., DRAKE, B. G., 1991. Effect of the long-term elevation of carbon dioxide concentration in the field on the quantum yield of photosynthesis of the C3 sedge Scirpus olneyi. Plant Physiology, Rockville, v. 96, p. 221-226.
MCKIBBEN, B., 2007. Climate change 2007: The physical science basis: Summary for policymakers. New York Review of Books, v. 54, p. 44-45.
MEEHL, G. A., STOCKER, T. F., COLLINS, W. D., FRIEDLINGSTEIN, P., GAYE, A. T., GREGORY, J. M., KITOH, A., KNUTTI, R., MURPHY, J. M., NODA, A., RAPER, S. C. B., WATTERSON, I. G., WEAVER, A. J., ZHAO, Z. C., 2007. Global Climate Projections. Cambridge University Press.
MONFREDA, C., RAMANKUTTY, N., FOLEY, J. A., 2008. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochemical Cycles 22:19.
NASH, T. H. I., 1996 Photosynthesis, respiration, productivity and growth. Cambridge University Press; Cambridge University Press.
OSBORNE, B., SAUNDERS, M., WALMSLEY, D., JONES, M., SMITH, P., 2010. Key questions and uncertainties associated with the assessment of the cropland greenhouse gas balance. Agriculture Ecosystems & Environment, v. 139, p. 293-301.
QIAO, Y. Z., ZHANG, H. Z., DONG, B. D., SHI, C. H., LI, Y. X., ZHAI, H. M., LIU, M. Y., 2010. Effects of elevated CO2 concentration on growth and water use efficiency of winter wheat under two soil water regimes. Agricultural Water Management, v. 97, p. 1742-1748.
RAMANKUTTY, N., HERTEL, T., LEE, H. L., ROSE, S. K., 2010. Global agricultural land use data for integrated assessment modeling, in Human-Induced Climate Change: An Interdisciplinary Assessment. Cambridge University Press, Pages 252-265, New York, NY.
RIBAUDO, M., GREENE, C., HANSEN, L., HELLERSTEIN, D., 2010. Ecosystem services from agriculture: Steps for expanding markets. Ecological economics, v. 69, p. 2085-2092.
STRIGEL, G, 2008. WMO Statement on the Status of the Global Climate 2007. Hydrologie Und Wasserbewirtschaftung 52:137-139.
TAIZ, L., ZEIGER, E., MOLLER, I. A., MURPHY, A, 2014. Plant physiology and development. Sixth Edition. Oxford University Press.
TUBIELLO, F. N., AMTHOR, J . S., BOOTE, K. J., DONATELLI, M., EASTERLING, W., FISCHER, G., GIFFORD, R. M., HOWDEN, M., REILLY, J., ROSENZWEIG, C., 2006. Crop response to elevated CO2 and world food supply - A comment on "Food for Thought..." by Long et al., Science 312 : 1918-1921, 2006. European Journal of Agronomy, v. 26, p. 215-223.
VANDERMEER, J., 1995. The ecological basis of agriculture. Annual Review of Ecology and Systematics, v. 26, p. 201-224.
VITOUSEK, P. M., MOONEY, H. A., LUBCHENCO, J., MELILLO, J. M., 1997. Human Domination of Earth's Ecosystems. Science, v. 277, p. 494-499.
VU, J. C. V., 2005. Acclimation of peanut (Arachis hypogaea L.) leaf photosynthesis to elevated growth CO2 and temperature. Environmental and Experimental Botany, v. 53, p. 85-95.
VU, J. C. V., ALLEN, L. H., 2009. Growth at elevated CO2 delays the adverse effects of drought stress on leaf photosynthesis of the C4 sugarcane. Journal of Plant Physiology, v. 166, p. 107-116.
YAN, H. M., FU, Y. L., XIAO, X. M., HUANG, H. Q., HE, H. L., EDIGER, L., 2009. Modeling gross primary productivity for winter wheat-maize double cropping System using MODIS time series and CO2 eddy flux tower data. Agriculture Ecosystems & Environment, v. 129, p. 391-400.
YOSHIMOTO, M., OUE, H., KOBAYASHI, K., 2005. Energy balance and water use efficiency of rice canopies under free-air CO2 enrichment. Agricultural and Forest Meteorology, v. 133, p. 226-246.
ZENG, Q., LIU, B. A., GILNA, B., ZHANG, Y. L., ZHU, C. W., MA, H. L., PANG, J., CHEN, G. P., ZHU, G. J., 2010. Elevated CO2 effects on nutrient competition between a C3 crop (Oryza sativa L.) and a C4 weed (Echinochloa crusgalli L.). Nutrient Cycling in Agroecosystems, v. 89, p. 93-104.