URBAN FORESTRY IN MOGI GUAÇU, SÃO PAULO STATE, BRAZIL
DOI:
https://doi.org/10.37856/bja.v95i3.4245Abstract
This study evaluated urban forestry in Mogi Guaçu, São Paulo State, Brazil, according to purchasing power. Stratified sampling was carried out in five neighborhoods, totaling 75 blocks, enabling the identification of 57 species, 20 of which are native and 37 exotics. The frequency of exotic specimens was 77.15%. The three most frequent species (57.87%) had the highest phytosanitary occurrences. Small trees presented 63.13%, medium ones 29.33% and large trees with 7.54% of frequency. Mogi Guaçu had an average Green Area Index (GAI) of 10.85 m² per inhabitant, with good potential to increase at low cost, as there are many empty spaces and the replacement of trees that presented problems must be with large trees of native forest near the city. There was no correlation between purchasing power and GAI.References
AVOLIO, M.; PATAKI, D. E.; TRAMMELL, T. L. E.; ENDTER-WADA, J., 2018. Biodiverse cities: the nursery industry, homeowners, and neighborhood differences drive urban tree composition. Ecological Monographs, v.0, p.1-18. Available at: <https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=2598&context=envs_facpub> Accessed on: May. 13, 2020.
BERTINI, M. A.; RUFINO, R. R.; FUSHITA, A. T.; LIMA, M. I. S., 2016. Public green areas and urban environmental quality of the city of São Carlos, São Paulo, Brazil. Brazilian Journal of Biology, v.76, p.700-707. Available at: <https://www.scielo.br/pdf/bjb/v76n3/1519-6984-bjb-1519-698401515.pdf> Accessed on: May. 10, 2020.
BLOOD, A.; STARR, G.; ESCOBEDO, F.; CHAPPELKA, A.; STAUDHAMMER, C., 2016. How do urban forests compare? Tree diversity in Urban and Periurban Forests of the Southeastern US. Forest, v.7, n.6, 120: doi:10.3390/f7060120. Available at: <https://www.mdpi.com/1999-4907/7/6/120> Accessed on: Apr. 10, 2020.
COUTTS, A. M.; WHITE, E. C.; TAPPER, N. J.; BERINGER, J.; LIVESLEY, S. J., 2015. Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theory Applied of Climatology, v.124, p.55-68. Available at: <https://link.springer.com/article/10.1007/s00704-015-1409-y> Accessed on: Apr. 12, 2020.
DASSOU, A. G.; TIXIER, P., 2016. Response of pest control by generalist predators to local-scale plant diversity: a meta-analysis. Ecology and Evolution. John Wiley and Sons Ltd. Available at: <https://agritrop.cirad.fr/579782/7/ece31917.pdf> Accessed on: Mar. 12, 2020.
FIELD, E.; GIBBS, M.; JACTEL, H.; BARSOUM, N., 2020. Associational resistance to both insect and pathogen damage in mixed forests is modulated by tree neighbour identity and drought. Journal of Ecology, v.108, p.1511-1522. Available at: <https://besjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2745.13397> Accessed on: Mar. 16, 2020.
GUO, Q.; FEI, S.; POTTER, K.M.; LIEBHOLD, A. M.; WEN, J., 2019. Tree diversity regulates forest pest invasion. PNAS, v.116, p.7382-7386. Available at: <https://www.pnas.org/content/pnas/116/15/7382.full.pdf> Accessed on: Mar. 16, 2020.
GUYOT, V.; CASTAGNEYROL, B.; VIALATTE, A.; DECONCHAT, M.; SELVI, F.; BUSSOTTI, F.; JACTEL, H., 2015. Tree diversity limits the impact of an invasive forest pest. PLOS ONE. Doi: 10.1371/journal.pone.0136469. Sept 11, 2015. Available at: <https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0136469&type=printable> Accessed on: Feb. 17, 2020.
HOLDER, C. D.; GIBBES, C., 2017. Influence of leaf and canopy characteristics on rainfall interception and urban hydrology. Hydrology Science Journal, v.62, p.182–190. Available at: <https://www.tandfonline.com/doi/pdf/10.1080/02626667.2016.1217414https://www.tandfonline.com/doi/pdf/10.1080/02626667.2016.1217414> Accessed on: Abr. 2, 2020.
IBGE. Cities. Statistical information, 2019. Brazilian Institute of Geography and Statistics (IBGE). Accessed on: 24/02/2019. Available at: <https://cidades.ibge.gov.br/brasil/sp/mogi-guacu/panorama> Accessed on: Apr. 20, 2020 (in Portuguese).
JACTEL, H.; POEYDEBAT, C.; HALDER, I.V.; CASTAGNEYROL, B., 2019. Interactive effects of tree mixing and drought on a primary forest pest. Frontiers in Forest and Global Change, v.2: Article 77. Doi: 10.3389/ffgc.2019.00077. Available at: <https://www.frontiersin.org/articles/10.3389/ffgc.2019.00077/full> Accessed on: Mar. 1, 2020.
KLAPWIJK, M. J.; BYLUND, H.; SCHROEDER, M.; BJORKMAN, C., 2016. Forest management and natural biocontrol of insect pests. Forestry, v.89, p.253–262. Available at: <https://pub.epsilon.slu.se/14064/7/klapwijk_m_j_et_al_170221.pdf> Accessed on: Jan. 5, 2020.
LI, X.; ZHANG, C.; LI, W.; KZOVKINA, Y. A.; WEINER, D., 2015. Who lives in greener neighborhoods? The distribution of street greenery and its association with residents’ socioeconomic conditions in Hartford, Connecticut, USA. Urban Forestry & Urban Greening, v.14, p.751-759. Available at: <https://hartfordclimate.files.wordpress.com/2016/12/who-lives-in-greener-neighborhoods.pdf> Accessed on: Abr. 23, 2020.
LIVESLEY, S. J.; McPHERSON, E. G.; CALFAPEITRA, C., 2016. The urban forest and ecosystem services: Impacts on urban water, heat, and pollution cycles at the tree, street, and city scale. Journal of Environmental Quality, v.45, p.119-124. Available at: <https://www.fs.fed.us/psw/publications/mcpherson/psw_2016_mcpherson001_livesley.pdf> Accessed on: Mar. 22, 2020.
MARTINI, A.; BIONDI, D.; BATISTA, A. C., 2017. Urban forest components influencing microclimate and cooling potential. Revista Ãrvore, v.41, p.1-12. Available at: <https://www.scielo.br/pdf/rarv/v41n6/0100-6762-rarv-41-06-e410603.pdf> Accessed on: Mar. 26, 2020.
McPHERSON, E. G.; Van DOORN, N.; GOED, J., 2016. Structure, function and value of street trees in California, USA. Urban Forestry & Urban Green, v.17, p.104-115. Available at: <https://www.fs.fed.us/psw/publications/mcpherson/psw_2016_mcpherson004.pdf> Accessed on: Mar. 11, 2020.
MONTEIRO, M. V.; HANDLEY, P.; DOICK, K. J., 2019. An insight to the current state and sustainability of urban forests across Great Britain based on i-Tree Eco surveys. Forestry, v.93, p.107-123. Doi:10.1093/forestry/cpz054
MORGENROTH, J.; OSTBERG, C.; BOSCH, C. K.; NIELSEN, A. B.; HAUER, R.; SJOMAN, H.; CHEN, W.; JANSSON, M., 2016. Urban tree diversity - Taking stock and looking ahead. Urban Forestry & Urban Greening, v.15, p.1-5. Available at: <https://www.researchgate.net/publication/283491634_Urban_Tree_Diversity_-_Taking_Stock_and_Looking_Ahead> Accessed on: Apr. 16, 2020.
NOWAK, D. J.; HOEHN, R. E.; BODINE, A. R.; GREENFIELD, E. J.; O’NEIL-DUNNE, J., 2016. Urban forest structure, ecosystem services and change in Syracuse, NY. Urban Ecosystems, v.19, p.1455-1477. Available at: <https://link.springer.com/content/pdf/10.1007/s11252-013-0326-z.pdf> Accessed on: Mar. 20, 2020.
OLIVEIRA, A. F.; NEVES, C. L. P.; PEREIRA, G. A.; GARCIA, F. H. S.; COELHO, S. J.; PEREIRA, J. A. A., 2018. Floristic of road Forestry conflicting with the electrical networks: a case study in the southern region of Minas Gerais State. Ornamental Horticulture, v.34, p.277-284. Available at: <https://www.scielo.br/pdf/oh/v24n3/2447-536X-oh-24-03-0277.pdf> Accessed on: Mar 11, 2020.
ORDÓÑEZ, C.; THRELFALL, C. G.; KENDAL, D.; HOCHULI, D. F.; DAVERN, M.; FULLER, R. A.; REE, R.; LIVESLEY, S. J., 2019. Urban forest governance and decision-making: A systematic review and synthesis of the perspectives of municipal mangers. Landscape and Urban Planning, v.189, p.166-180. Available at: <https://www.sciencedirect.com/science/article/abs/pii/S0169204618310673?via%3Dihub> Accessed on: Mar. 16, 2020.
RUSSO, A.; ESCOBEDO, F. J.; ZERBE, S., 2016. Quantifying the local-scale ecosystem services provided by urban treed streetscapes in Bolzano, Italy. Environmental Science, v.3, p.58-76. Available at: <https://www.researchgate.net/publication/292943550_Quantifying_the_local-scale_ecosystem_services_provided_by_urban_treed_streetscapes_in_Bolzano_Italy> Accessed on: Mar. 17, 2020.
SANUSI, R.; JOHNSTONE, D. M.; MAY, P. B.; LIVESLEY, S. J., 2017. Microclimate benefits that different street tree species provide to sidewalk pedestrians relate to differences in Plant Area Index. Landscape and Urban Planning, v.157, p.502-511. Available at: <https://www.sciencedirect.com/science/article/abs/pii/S0169204616301633?via%3Dihub> Accessed on: Mar. 13, 2020.
SONG, X.; CHANG, K. T.; YANG, L.; SCHEFFRAN, J., 2016. Change in environmental benefits of urban land use and its drivers in Chinese cities, 2000-2010. International Journal of Environmental Research and Public Health, v.13, 535; doi:103.390/ijerph13060535. Available at: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4923992/> Accessed on: May. 2, 2020.
STEENBERG, J. W. N.; ROBINSON, P. J.; DUINKER, P. N., 2019. A spatio-temporal analysis of the relationship between housing renovation socioeconomic status, and urban forest ecosystems. Urban Analytics and City Science, v.46, p.1115-1131. Available at: <https://journals.sagepub.com/doi/full/10.1177/2399808317752927>. Accessed on: Mar. 16, 2020.
SU, L.; ZHAO, C.; XU, W.; XIE, Z., 2016. Modelling interception loss using the revised Gash model: a case study in a mixed evergreen and deciduous broadleaved forest in China. Ecohydrology, v.9, p.1580–1589. Available at: <https://www.researchgate.net/publication/301920552_Modelling_interception_loss_using_the_revised_Gash_model_a_case_study_in_a_mixed_evergreen_and_deciduous_broadleaved_forest_in_China/link/5cb17364a6fdcc1d4991154a/download> Accessed on: Abr. 12, 2020.
XIAO, Q.; McPHERSON, E. G., 2016. Surface water storage capacity of twenty tree species in Davis, California. Journal of Environment Quality, v.45, p.188-198. Available at: <https://www.fs.fed.us/psw/publications/mcpherson/psw_2016_mcpherson002_xiao.pdf> Accessed on: Abr. 16, 2020.
WANG, X.; YAO, J.; YU, S.; MIAO, C.; CHEN, W.; HE, X., 2018. Street trees in a Chinese forest city: Structure, benefits and costs. Sustainability, v.10, n.3, 674 Available at: Doi:10.3390/su10030674. Access? Available at: <https://www.mdpi.com/2071-1050/10/3/674>. Accessed on: Mar. 16, 2020.
YANG, B.; LEE, D. K.; HEO, H. K.; BIGING, G., 2019. The effects of tree characteristics on rainfall interception in urban areas. Landscape and Ecological Engineering, v.15, p.289-296. Available at: <https://link.springer.com/article/10.1007/s11355-019-00383-w> Accessed on Mar. 13, 2020.