𝘐𝘯 𝘷𝘪𝘵𝘳𝘰 SCREENING OF SUGARCANE (𝘚𝘢𝘤𝘤𝘩𝘢𝘳𝘶𝘮 𝘰𝘧𝘧𝘪𝘤𝘪𝘯𝘢𝘳𝘶𝘮 Linnaeus) ASSOCIATED RHIZOBACTERIA TO PLANT GROWTH PROMOTION

Autores

DOI:

https://doi.org/10.37856/bja.v96i3.4291

Resumo

The aimed of this study was to test in vitro four bacterial isolates (Bacillus megaterium, B. subtilis, B. pumilus, and Enterobacter cloaceae) with potential to plant growth promotion. The bacterial isolates were subjected to inorganic phosphate solubilization assay in liquid medium, exopolisacarídeos production and production of indole acetic acid (IAA) in vitro. The phosphorus solubilizing assay showed that B. megaterium is able to solubilizing phosphorus. Exopolysaccharides production test detected that B. megaterium and E. cloaceae are most efficient, and carbon source and pH were not dependent factors. The IAA production showed efficiency by E. cloaceae. These results proposed that bacterial isolates used in this study are applicable to inoculant production program and agricultural applicability.

Referências

ASHRAF, M.; AKRAM, N. A.; AL-QURAINY, F.; FOOLAD, M. F. 2011. Drought tolerance: roles of organic osmolytes, growth regulators, and mineral nutrients. Advances in Agronomy, Delaware, v. 111, p. 249-296.

ASHRAF, M.; FOOLAD, M. R. 2005. Pre-sowing seed treatment-a shotgun approach to improve germination, plant growth, and crop yield under saline and non-salne conditions. Advances in Agronomy, Delaware, v. 88, p. 223-271.

ASHRAF, M.; HASNAIN, S.; BERGE, S. H.; MAHMOOD, O. T. 2004. Inoculating wheat seedlings with exopolysaccharide producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biology and Fertility of Soils,New York, v. 40, p. 157–162.

BARRETO, M. C. S.; FIGUEIREDO, M. V. B.; BURITY, H. A.; SILVA, M. R. L. B.; LIMA FILHO, J. L. 2011. Produção e comportamento Geológico de Biopolímeros produzidos por rizóbios e caracterização genética. Current Agricultural Science and Technology, Pelotas, v. 17, p. 221-227.

BASHAN, Y.; HOLGUIN, G. 2004. Azospirillum-plant retionships: environmental and physiological advances. Canadian Journal of Microbiology, Ontario, v. 43, p. 103-121.

CERQUEIRA, W. F.; MORAES, J. S.; MIRANDA, J. S.; MELLO, I. K. S.; SANTOS, A. F. J. 2015. Influência de bactérias do gênero Bacillus sobre o crescimento de feijão comum (Phaseolus vulgaris L.). Enciclopédia Biosfera, Jandaiara , v. 11, p.20.

GYANESHWAR, P.; KUMAR, G. N.; PAREKH, L. J.; POOLE, P. S. 2002. Role of soil microorganisms in improving p nutrition of plant. Plant and Soil, New York, v. 245, p. 83-93.

HINSINGER, P. 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil, New York, v. 237, p. 173–195.

KARYGIANNI, L.; REN, Z.; KOO, H.; THURNHEER, T. 2020. Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends in Microbiology, London, v. 28, n. 8, p. 668-681.

KHAN, A. A.; JILANI, G.; AKHTAR, M. S.; NAQVI, S. M. S.; RASHEED, M. 2009. Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. Journal of Agricultural and Biological Sciences, s.l., v. 1, p. 48-58.

LAMBRECHT, M.; OKON, Y.; BROEK, A. V.; VANDERLEYDEN, J. 2000. Indole-3-acetic acid: a reciprocal signaling molecule in bacteria-plant interactions. Trends in Microbiology, s.l., v. 8, p. 298-300.

LIU, S. B.; CHEN, X. L.; HE, H. L.; ZHANG, X. Y.; XIE, B. B.; YU, Y.; CHEN, B.; ZHOU, B. C.; ZHANG, Y. Z. 2013. Structure and ecological roles of a novel exopolysaccharide from the artic sea ice bacterium Pseudolateromonas sp. Strain SM20310. Applied and Environental Microbiology, London, v. 1, p. 224.

MALAVOLTA, E.; VITTI, G. C.; DE OLIVEIRA, S. A. 1997. Avaliação do estado nutricional das plantas: princípios e aplicações. Piracicaba: Associação Brasileira para Pesquisa da Potassa e do Fosfato.

MARIANO, R. L. R.; KLOEPPER, J. W. 2000. Método alternativo de biocontrole: resistência sistêmica induzida por rizobactérias. Revisão Anual de Patologia de Plantas, Piracicaba, v. 8, p. 121-137.

MARSCHNER, P.; CROWLEY, D.; YANG, C. H. 2004. Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant and Soil, New York, v. 261, p. 199-208.

MATOS, A. D. M.; GOMES, I. C. P.; NIETSCHIE, S.; XAVIER, A. A.; GOMES, W. S.; SANTOS NETO, J. A.; PEREIRA, M. C. T. 2017. Phosphate solubilization by endophytic bacteria isolated from banana trees. Anais da Academia Brasileira de Ciências, Rio de Janeiro, v. 89, n. 4, p. 2945-2954.

NAUTIYAL, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, London, v. 170, p. 265-270.

PANDEY, A.; TRIVEDI, P.; KUMAR, B.; PALNI, L. M. S. 2006. Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (b0) isolated from a sub-alpine location in the Indian central Himalaya. Current Microbiology, Berlim, v. 53, p. 102-107.

PEDRAZA, R. O.; RAMIREZ-MATA, A.; XIQUI, M. L.; BACA, B. E. 2004. Aromatic amino acid aminotransferase activity and indole-3-acetic acid production by associative nitrogen-fixing bacteria. FEMS Microbiology Letters, London, v. 233, p. 15–21.

SANTOS, C. S.; SANTOS, J. M. C. S.; SILVA, J. M.; TENÓRIO, F. A.; GUEDES-CELESTINO, E. L.; CRISTO, C. C. N.; NASCIMENTO, M. S.; MONTALDO, Y. C. M.; OLIVEIRA, J. U. L.; SANTOS, T. M. C. 2019. Bioprospecting of endophytic bacteria (Bacillus spp.) from passionfruit (Passiflora edulis Sims f. flavicarpa) for plant growth promotion. Australian Journal of Crop Sciente, s.l., v. 13, n. 8, p. 1369-1374.

SEESURIYACHAN, P.; KUNTIYA, A.; HANMOUNGJAI, P.; TECHAPUN, C.; CHAAIYASO, T.; LEKSAWASDI, N. 2012. Optimization of Exopolysaccharide Overproduction by Lactobacillus confuses in solid State Fermentation under High Salinity Stress. Bioscience, Biotechnology, and Biochemistry, London, v. 76, p. 912-917.

SGROY, V.; CASSÃN, F.; MASCIARELLI, O.; DEL PAPA, M. F.; LAGARES, A.; LUNA, V. 2009. Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Applied Microbiology and Biotechnology, Berlim, v. 85, p. 371–381.

SILVA FILHO, G. N.; VIDOR, C. 2000. Solubilização de fosfato por microrganismos na presença de fontes de carbono. Revista Brasileira de Ciência do Solo, Viçosa, v. 24, p. 311-319.

SILVA, F. A. S.; AZEVEDO, C. A. V. 2009. Principal components analysis in the software assistat-statistical attendance. In: WORLD CONGRESS ON COMPUTERS IN AGRICULTURE, 7., 2009, Reno. Proceedings... St. Joseph: American Society of Agricultural and Biological Engineers, 2009. Available at: <http://elibrary.asabe.org/azdez.asp?JID=1&AID=29066&CID=wcon2009&T=2>. Accesed on: Nov. 28, 2021.

SILVA, C. S.; SILVA, J. M.; OLIVEIRA, J. U. L.; ARAÚJO, R. G. V.; LIMA, J. R. B.; GUEDES, E. L. F.; SANTOS, M. T.; MONTALDO, Y.C.; SANTOS, T. M. C. 2019. Bioprospecting rhizobacteria associated to cacti to water stress resistance and biofilm formation. Revista Brasileira de Gestão Ambiental e Sustentabilidade, João Pessoa, v 6, n. 14, p. 873-881.

SILVA, F. C. 1999. Manual de Análises químicas de solos, plantas e fertilizantes. Brasília, Embrapa comunicação para transferência de tecnologia. 370p.

SULEMAN, M.; YASMIN, S.; RASUL, M.; YAHYA, M.; ATTA, B. M.; MIZRA, M. S. 2018. Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat. PLOS ONE, New York, v. 13, n. 9, p. e0204408.

VENIERAKI, A.; DIMOU, M.; PERGALIS, P.; KEFALOGIANNI, I. O.; CHATZIPAVLIDIS, I.; KATINAKIS, P. 2011. The genetic diversity of culturable nitrogen-fixing bacteria in the rhizosphere of wheat. Microbial Ecology, Berlim, v. 61, p. 277-285.

VERMA, S. C.; LADHA, J. K.; TRIPATHI, A. K. 2001. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. Journal of Biotechnology, New York, v. 91, p. 127-141.

Downloads

Publicado

2021-12-29

Edição

Seção

Artigos