DECOMPOSITION OF WHITE OAT PHENOTYPIC VARIABILITY BY ENVIRONMENTAL COVARIATES
DOI:
https://doi.org/10.37856/bja.v97i3.4316Resumo
The study aims to quantify the effects of environmental variables on the interaction between genotypes x environments and to evaluate the sensitivity of white oat genotypes to grain yield in 10 years of cultivation. The experiment took place in the municipality of Augusto Pestana – RS. The experimental design used was in randomized blocks, being evaluated the grain yield of 26 white oat genotypes in 20 complex environments. Greater phenotypic stability was observed for the URS 21 genotype, by the AMMI and GGE methodologies. The URS Corona genotype showed general adaptation, high genetic value and predictable environmental variations by the GGE method and reaction norm. Higher minimum air temperature and lower medium temperature and relative air humidity enhance the productive performance of white oat genotypes. The genotypes URS 22, Fapa Slava, IPR Afrodite and Estampa express positive responses to the covariates temperature medium, maximum, minimum and relative air humidity, respectively. Relative humidity explains more than 50% of the biological variation of white oat genotypes.Referências
AMBROSINI, D.P.; MALHADO, C.H.M.; MARTINS FILHO, R.; CARNEIRO, P.L.S. Interação genótipo x ambiente via modelos de normas de reação para caracterÃsticas de crescimento em bovinos Nelore. Pesquisa Agropecuária Brasileira, v. 51, p. 177-186, 2016. DOI: https://doi.org/10.1590/S0100-204X2016000200010
CARVALHO, I.R.; NARDINO, M.; DEMARI, G.H.; BAHRY, C.A.; SZARESKI, V.J.; PELISSARI, G.; FERRARI, M.; PELEGRIN, A.J.; OLIVEIRA, A.C.; MAIA, L.C.; SOUZA, V.Q. Bi-segmented regression, factor analysis and AMMI applied to the analysis of adaptability and stability of soybean. Australian Journal Crop Science, v. 10, p. 1410-1416, 2016. DOI: https://doi.org/10.21475/ajcs.2016.10.10.pne63.
COSTA-NETO, G.; GALLI, G.; CARVALHO, H.F.; CROSSA, J.; FRITSCHE-NETO, R. EnvRtype: a software to interplay enviromics and quantitative genomics in agriculture. G3, v. 11, p. 1-20, 2021. DOI: https://doi.org/10.1093/g3journal/jkab040
COSTA-NETO, G.; ODILON, P.M.J.; HEINEMANN, A.B.; DE CASTRO, A.P.; DUARTE, J.B. A novel GIS-based tool to reveal spatial trends in reaction norm: upland rice case study. Euphytica v. 216, p. 1-16, 2020. DOI: https://doi.org/10.1007/s10681-020-2573-4
CRUZ, C.D.; REGAZZI, A.J.; CARNEIRO, P.C.S. Modelos biométricos aplicados ao melhoramento genético. 4.ed. Viçosa: UFV, 2012, 514p.
DUARTE, J.B.; VENCOVSKY, R. Interação genótipos x ambientes: uma introdução à análise "AMMI". Série Monografias. Sociedade Brasileira de Genética, v.9, 1999. https://files.cercomp.ufg.br/weby/up/396/o/GxE_AMMI.pdf. Accessed in: May 24, 2022.
FELIPE, V.P.S.; SILVA, M.A.; WENCESLAU, R.R.; VALENTE, B.D.; SANTOS, G.G.; FREITAS, L.S.; CORRÊA, G.S.S.; CORRÊA, A.B. Utilização de modelos de norma de reação com variância residual heterogênea para estudo de valores genéticos de peso de codornas de corte em função de nÃveis de proteÃna bruta na dieta. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v. 64, p. 991-1000, 2012. DOI: https://doi.org/10.1590/S0102-09352012000400028
MELO, P.G.S.; ALVARES, R.C.; PEREIRA, H.S.; BRAZ, A.J.B.P.; FARIA, L.C.; MELO, L.C. Adaptability and stability of common bean genotypes in family farming systems. Pesquisa Agropecuária Brasileira, v. 53, p. 189-196, 2018. DOI: https://doi.org/10.1590/S0100-204X2018000200007
NICOGLOU, A. The evolution of phenotypic plasticity: genealogy of a debate in genetics. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, v. 50, p. 67-76, 2015. DOI: https://doi.org/10.1016/j.shpsc.2015.01.003
OLADOSU, Y.; RAFII, M.Y.; ABDULLAH, N.; MAGAJI, U.; MIAH, G.; HUSSIN, G.; RAMLI, A. Genotype × Environment interaction and stability analyses of yield and yield components of established and mutant rice genotypes tested in multiple locations in Malaysia. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, v.67, p. 590-606, 2017. DOI: https://doi.org/10.1080/09064710.2017.1321138
OLIVEIRA, A.B.D.; DUARTE, J.B.; PINHEIRO, J.B. Emprego da análise AMMI na avaliação da estabilidade produtiva em soja. Pesquisa Agropecuária Brasileira, v. 38, p. 357-364, 2003. DOI: https://doi.org/10.1590/S0100-204X2003000300004
PEIXOTO, M.A.; MALIKOUSKI, R.G.; NASCIMENTO, E.F.D.; SCHUSTER, A.; FARIAS, F.J.C.; CARVALHO, L.P.; TEODORO, P.E.; BHERING, L.L. Genotype plus genotype by-environment interaction biplot and genetic diversity analyses on multi-environment trials data of yield and technological traits of cotton cultivars. Ciência Rural, v. 52, e20201054, 2022. DOI: https://doi.org/10.1590/0103-8478cr20201054
R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2022. URL https://www.R-project.org/
RAD, M.N.; KADIR, M.A.; RAFII, M.Y.; JAAFAR, H.Z.; NAGHAVI, M.R.; AHMADI, F. Genotype environment interaction by AMMI and GGE biplot analysis in three consecutive generations of wheat (Triticum aestivum) under normal and drought stress conditions. Australian Journal Crop Science, v. 7, p. 956-961, 2013. http://www.cropj.com/rad_7_7_2013_956_961.pdf
SINGH, C.; GUPTA, A.; GUPTA, V.; KUMAR, P.; SENDHIL, R.; TYAGI, B.S.; SINGH, G.; CHATRATH, R.; SINGH, G.P. Genotype x environment interaction analysis of multi-environment wheat trials in India using AMMI and GGE biplot models. Crop Breeding and Applied Biotechnology, v. 19, p. 309-318, 2019. DOI: https://doi.org/10.1590/1984-70332019v19n3a43
SZARESKI, V.J.; CARVALHO, I.R.; KEHL, K.; LEVIEN, A.M.; NARDINO, M.; DELLAGOSTIN, S.M.; DEMARI, G.H.; LAUTENCHLEGER, F.; VILLELA, F.A.; PEDÓ, T.; SOUZA, V.Q.; AUMONDE, T.Z. Adaptability and stability of wheat genotypes according to the phenotypic index of seed vigor. Pesquisa Agropecuária Brasileira, v. 53, p. 727-735, 2018. DOI: https://doi.org/10.1590/S0100-204X2018000600009
SZARESKI, V.J.; CARVALHO, I.R.; KEHL, K.; LEVIEN, A.M.; ROSA, T.C.D.; SOUZA, V. Q.D. Adaptability and stability with multivariate definition of macroenvironments for wheat yield in Rio Grande do Sul. Pesquisa Agropecuária Brasileira, v. 56, e02468, 2021. DOI: https://doi.org/10.1590/S1678-3921.pab2021.v56.02468
TAIZ, L.; ZEIGER, E.; MOLLER, I.M.; MURPHY, A. Fisiologia e Desenvolvimento Vegetal, 6ª ed., Porto Alegre: Artmed, 2017, 888p.
TOMAZ, F.L.D.S.; ARAÚJO, L.B.R.; MAGALHÃES, C.H.C.D.; DO VALE, J.C.; MANO, A.R.D.O.; ROCHA, M.D.M. Indication of cowpea cultivars for the production of dry grain in the state of Ceará. Revista Ciência Agronômica, v. 53, e20207802, 2022. DOI: https://doi.org/10.5935/1806-6690.20220023
VELOSO, R.C.; ABREU, L.R.A.; MOTA, L.F.M.; CASTRO, M.R.; SILVA, M.A.; PIRES, A.V.; LIMA, H.J.D.A.; BOARI, C.A. Modelos de norma de reação para estudo das caracterÃsticas de qualidade da carne de codornas de corte em função das razões (metionina+ cistina): lisina da dieta. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v. 67, p. 1438-1448, 2015. DOI: https://doi.org/10.1590/1678-4162-7940
VETVICKA, V.; VANNUCCI, L.; SIMA, P.; RICHTER, J. Beta glucan: supplement or drug? From laboratory to clinical trials. Molecules, v. 24, p. 1251, 2019. DOI: https://doi.org/10.3390/molecules24071251
YAN, W.; KANG, M.S. GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC press, Boca Raton, Florida, 2003.
YAN, W.; KANG, M.S.; MA, B.; WOODS, S.; CORNELIUS, P.L. GGE biplot vs. AMMI analysis of genotypeâ€byâ€environment data. Crop Science, v. 47, p. 643-653, 2007. DOI: https://doi.org/10.2135/cropsci2006.06.0374
YOKOMIZO, G.K.I.; DUARTE, J.B.; VELLO, N.A.; UNFRIED, J. R. Análise AMMI da produtividade de grãos em linhagens de soja selecionadas para resistência à ferrugem asiática. Pesquisa Agropecuária Brasileira, v. 48, p. 1376-1384, 2013. DOI: https://doi.org/10.1590/S0100-204X2013001000009