MONITORING COMMON BEAN DEVELOPMENT WITH DIFFERENT WATER AND NITROGEN LEVELS BY SPECTRAL PROPERTIES

Autores

  • Priscylla Ferraz Câmara Monteiro Fundação de Estudos Agrários "Luiz de Queiroz"
  • Rubens Angulo Filho Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Av. Pádua Dias, 11, CEP 13418-900, Piracicaba, SP
  • Rodrigo Otávio Câmara Monteiro Instituto Federal de Educação, Ciência e Tecnologia, Av. Osvaldo Aranha, 540, CEP 95700-000, Bento Gonçalves, RS.
  • Marcos Adami Instituto Nacional de Pesquisas Espaciais
  • Maurício Alves Moreira Instituto Nacional de Pesquisas Espaciais

DOI:

https://doi.org/10.37856/bja.v88i2.71

Resumo

The aims of this study were to determine the impact of different nitrogen rates and water levels on biophysical (Leaf area index – LAI) and spectral parameters obtained with continuum removal (band depth and area) of bean crop and to determine the growth stage that spectral parameters best correlated with LAI. Absorption band, positioned at 665 nm, was analyzed in depth and width. Field canopy reflectance measurements were acquired at six bean growth stages over 48 plots with four water levels (179.5; 256.5; 357.5 and 406.2 mm), three nitrogen rates (0; 80 and 160 kg ha–1) and four replicates. The N had no effect on either absorption band area (AB) or the absorption band depth (PB) of the absorption band centered at 665 nm (chlorophyll) for the all growth stages.  On the other hand, the irrigation level significantly affected these spectral parameters in most growth stages. The best correlations between LAI and absorption band parameters were observed at R6 stage.

Referências

ADAMI, M.; RUDORFF, B.F.T.; BREUNIG, F.M.; PONZONI, F.J.; GALVÃO, L.S.; MOREIRA, M.A.; FREITAS, J.G.; SALA, V.M.R. 2010. Effect of Nitrogen and Endophytic Bacteria on Biophysical and Spectral Parameters of Wheat Canopy. Agronomy Journal, v.102, p.544-552.

AITA, C.; GIACOMINI, S.J.; HUBNER, A.P.; CHIAPINOTTO, J.C.; FRIES, M.R. 2004. Cover crop mixtures preceding no-till corn. I – Soil nitrogen dynamics. Revista Brasileira de Ciência do Solo, v.28, p.739-749.

ALLEN, R.G.; PEREIRA, L.S.; RAES, D.; SMITH, M. 1998. Crop evapotranspiration: guidelines for computing crop water requirements. Rome: FAO. 328p. FAO Irrigation and Drainage Paper, 56.

BARBOSA FILHO, M.P.; FAGERIA, N.K., SILVA, O.F. 2005. Sources, rates and fractional topdressing of nitrogen fertilizers for irrigated common bean. Ciência Agrotecnologia, v.29, p.69-76.

CLARK, R.N.; ROUSH, T.L. 1984. Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research, v.89, p.6329-6340.

CURRAN, P.J., DUNGAN, J.L.; PETERSON, D.L. 2001. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: Testing the Kokaly and Clark methodologies. Remote Sensing of Environment, v.76, p.349–359.

DOURADO NETO, D.; FANCELLI, A.L. 2007. Bean production. Piracicaba: Livroceres. 386p.

FANCELLI, A.L. 2009. Bean: Special topics in management. Piracicaba: Livroceres. 372p.

FENG, W., YAO, X., ZHU, Y., TIAN, Y.C.; CAO, W. 2008. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. European Journal of Agronomy, v.28, p.394–404.

GAO, B. 1996. NDWI: A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, v.58, p.257–266.

GALVÃO, L.S.; FORMAGGIO, A.R.; TISOT, D.A. 2005. Discrimination of sugarcane varieties in southeastern Brazil Hyperion data. Remote Sensing of Environment, v.94, p.523–534.

GALVÃO, L.S.; ROBERTS, D.A.; FORMAGGIO, A.R.; NUMATA, I.; BREUNIG. F.M. 2009. View angle effects on the discrimination of soybean varieties and on the relationships between vegetation indices and yield using off-nadir Hyperion data. Remote Sensing of Environment, v.113, p.846–856.

GOMES, A.A., ARAÚJO, A.P., ROSSIELLO, R.O.P., PIMENTEL, C. 2000. Accumulation of biomass, physiological characteristics and grain yield of bean cultivars under irrigated and dry regimes. Pesquisa Agropecuária Brasileira, v.35, p.1927-1937.

HANS, R.J.; KELLER, J.; RASMUSSEN, V.P.; WILSON, G.D. 1976. Line source sprinkler for continuous variable irrigation crop production studies. Soil Science Society of America Journal, v.40, p.426-429.

JACKSON, R.D.; PINTER JR., P.J.; IDSO, S.B.; REGINATO, R.J. 1979. Wheat spectral reflectance: interactions between crop configuration, sun elevation, and azimuth angle. Applied Optics, v.18, p.3730-3732.

JACQUEMOUD, S.; USTIN, S.L.; VERDEBOUT, J.; SCHMUCH, G.; ANDREOLI, G.; HOSGOOD, B. 1996. Estimating leaf biochemistry using the prospect leaf optical properties model. Remote Sensing of Environment, v.56, p.194-202.

KOKALY, R.F.; CLARK, R.N. 1999. Spectrocopic determination of leaf biochemistry using band-depth analysis af absortion features and stepwise multiple linear regression. Remote Sensing of Environment, v.67, p.267-287.

MEER, F. VAN DER. 2000. Spectral curve shape matching with a continuum removal CCSM algorithm. International Journal of Remote Sensing, v.21, p.3179-3185.

MILTON, E.J. 1987. Principles of field spectroscopy. International Journal of Remote Sensing, v.8, p.1807-1827.

MONTEIRO, P.F.C.; ANGULO FILHO, R.; XAVIER, A.C.; MONTEIRO, R.O.C. 2012. Assessing biophysical variable parameters of bean crop with hyperspectral measurements. Scientia Agricola, v.69, n.2, p.87-94.

MUTANGA, O.; SKIDMORE, A.K.; PRINS, H.H.T. 2004. Predicting in situ pasture quality Kruger National Park, South Africa, using continuum-removed absorption features. Remote Sensing of Environment, v.89, p.393-408.

PIVETTA, C.R.; HELDWEIN, A.B.; MALDANER, I.C.; RADONS, S.R.; TAZZO, I.F.; LUCAS, D.D. 2010. Evapotranspiração máxima do pimentão cultivado em estufa plástica em função de variáveis fenométricas e meteorológicas. Revista Brasileira de Engenharia Agrícola e Ambiental, v.14, p.768-775.

PU, R.; GE, S.; KELLY, N.M.; GONG, P. 2003. Spectral absortion features as indicators of water status in coast live oak (Quercus agrifolia) leaves. International Journal of Remote Sensing, v.24, p.1799-1810.

RAIJ, B. VAN.; QUAGGIO, J.A.; CANTARELLA, H.; ABREU, C.A. 1997. Results interpretation of soil analysis. In: Raij, B. van.; Cantarella, H.; Quaggio, J.A.; Furlani, A.M.C. (ed.). Liming and fertilizer recommendations for São Paulo state. 2ed. Campinas: IAC. 279 p. Boletim técnico, 100.

SANT’ANA, E.V.P.; SANTOS, A.B.; SILVEIRA, P. M. 2011. The efficiency of use of nitrogen apllied in top dressing in irrigated bean. Revista Brasileira de Engenharia Agricola e Ambiental, v.15, p.458-462.

SOUSA, M.A.; LIMA, M.D.B.; SILVA, M.V.V.; ANDRADE, J.W.S. 2009. Estresse hídrico e profundidade de incorporação do adubo afetando os componentes de rendimento do feijoeiro. Pesquisa Agropecuária Tropical, v.39, p.175-182.

THENKABAIL, P.S.; SMITH, R.B.; DE PAUW, E. 2000. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing Environment, v.71, p.158–182.

TILLING, A.K.; O’LEARY, G.J.; FERWERDA, J.G.; JONES, S.D.; FITZGERALD, G.J.; RODRIGUEZ, D. AND BELFORD, R. 2007. Remote sensing of nitrogen and water stress in wheat. Field Crops Research, v.104, p.77–85.

URCHEI, M.A., RODRIGUES, J.D., STONE, L.F. 2000. Growth analysis of two bean cultivars under irrigation in no tillage and the conventional tillage. Pesquisa Agropecuária Brasileira, v.35, p.497-506.

WU, C.Y.; NIU, Z.; TANG; Q. HUANG. W. J. 2008. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agricultural and Forest Meteorology, v.148, p.1230–1241.

Downloads

Publicado

2013-10-01

Edição

Seção

Artigos