VOLATILE ORGANIC COMPOUNDS AND ANTIOXIDANT CAPACITY OF Curcuma longa L. AND Curcuma caesia Roxb. LEAVES: EXPLORING BIOACTIVITY IN NATURAL PRODUCTS
DOI:
https://doi.org/10.37856/bja.v98i2.4328Abstract
Natural products contain diverse bioactive compounds with therapeutic and pharmacological potential, including antimicrobial, antioxidant, anticancer, antifungal properties, and respiratory benefits for conditions. Bioactive volatile organic compounds were identified using headspace-gas chromatography in Curcuma longa L (CL). and Curcuma caesia Roxb. (CC) leaves, with CL leaves containing 90.48% terpenes and CC leaves containing 77.5% terpenes and 22.5% non-terpenes. The total phenolic content and antioxidant capacity were evaluated, employing a 2x7 factorial design analyzed through one-way and factorial ANOVA. Methanol:water and ethanol extracts from CL exhibited superior radical sequestering capacity (IC50 of 0.35 mg mL-1) compared to CC extracts. The highest Ferric Reducing Antioxidant Power value of 95.28 µMol FeSO g-1 was achieved analyzing methanol:water. Ethanol:water was considered most appropriate, as it is the most suitable solvents for industrial food processing due to safety and compatibility aspects. Natural products contain diverse bioactive compounds with therapeutic and pharmacological potential, including antimicrobial, antioxidant, anticancer, antifungal properties, and respiratory benefits for conditions. Bioactive volatile organic compounds were identified using headspace-gas chromatography in Curcuma longa L (CL). and Curcuma caesia Roxb. (CC) leaves, with CL leaves containing 90.48% terpenes and CC leaves containing 77.5% terpenes and 22.5% non-terpenes. The total phenolic content and antioxidant capacity were evaluated, employing a 2x7 factorial design analyzed through one-way and factorial ANOVA. Methanol:water and ethanol extracts from CL exhibited superior radical sequestering capacity (IC50 of 0.35 mg mL-1) compared to CC extracts. The highest Ferric Reducing Antioxidant Power value of 95.28 µMol FeSO g-1 was achieved analyzing methanol:water. Ethanol:water was considered most appropriate, as it is the most suitable solvents for industrial food processing due to safety and compatibility aspects.References
Acar, M. B., İbiş, E. K., Şimşek, A., Vural, C., Tez, C., & Özcan, S. (2020). Evaluation of Achillea millefolium essential oil compounds and biological effects on cervix cancer HeLa cell line. The EuroBiotech Journal, 4(1), 17–24. Retrieved from https://doi.org/10.2478/ebtj-2020-0003
Almeida, D., Pinto, D., Santos, J., Vinha, A. F., Palmeira, J., Ferreira, H. N., … Oliveira, M. B. P. P. (2018). Hardy kiwifruit leaves (Actinidia arguta): An extraordinary source of value-added compounds for food industry. Food Chemistry, 259, 113–121. Retrieved from https://doi.org/10.1016/j.foodchem.2018.03.113
Andrade-Ochoa, S., Correa-Basurto, J., RodrÃguez-Valdez, L. M., Sánchez-Torres, L. E., Nogueda-Torres, B., & Nevárez-Moorillón, G. V. (2018). In vitro and in silico studies of terpenes, terpenoids and related compounds with larvicidal and pupaecidal activity against Culex quinquefasciatus Say (Diptera: Culicidae). Chemistry Central Journal, 12(1), 53. Retrieved from https://doi.org/10.1186/s13065-018-0425-2
Baek, S., Kim, J., Moon, B. S., Park, S. M., Jung, D. E., Kang, S. Y., … Lee, K. P. (2020). Camphene Attenuates Skeletal Muscle Atrophy by Regulating Oxidative Stress and Lipid Metabolism in Rats. Nutrients, 12(12), 3731. Retrieved from https://doi.org/10.3390/nu12123731
Boukhatem, M. N., Sudha, T., Darwish, N. H. E., Chader, H., Belkadi, A., Rajabi, M., … Mousa, S. A. (2020). A New Eucalyptol-Rich Lavender (Lavandula stoechas L.) Essential Oil: Emerging Potential for Therapy against Inflammation and Cancer. Molecules, 25(16), 3671. Retrieved from https://doi.org/10.3390/molecules25163671
Braga, M. C., Vieira, E. C. S., & de Oliveira, T. F. (2018). Curcuma longa L. leaves: Characterization (bioactive and antinutritional compounds) for use in human food in Brazil. Food Chemistry, 265, 308–315. Retrieved from https://doi.org/10.1016/j.foodchem.2018.05.096
Canlı, K., Yetgin, A., Benek, A., Bozyel, M. E., & Murat Altuner, E. (2019). In Vitro Antimicrobial Activity Screening of Ethanol Extract of Lavandula stoechas and Investigation of Its Biochemical Composition. Advances in Pharmacological Sciences, 2019, 1–6. Retrieved from https://doi.org/10.1155/2019/3201458
Chan, E. W. C., Lim, Y. Y., & Lim, T. Y. (2007). Total Phenolic Content and Antioxidant Activity of Leaves and Rhizomes of Some Ginger Species in Peninsular Malaysia. Bulletin Singapore, 59(2), 47–56. Retrieved from https://www.nparks.gov.sg/sbg/research/publications/gardens-bulletin-singapore/-/media/sbg/gardens-bulletin/4-4-59-1-2-06-y2007-v59-p1-p2-gbs-pg-47.pdf
Chávez-Silva, F., Cerón-Romero, L., Arias-Durán, L., Navarrete-Vázquez, G., Almanza-Pérez, J., Román-Ramos, R., … Estrada-Soto, S. (2018). Antidiabetic effect of Achillea millefollium through multitarget interactions: α-glucosidases inhibition, insulin sensitization and insulin secretagogue activities. Journal of Ethnopharmacology, 212, 1–7. Retrieved from https://doi.org/10.1016/j.jep.2017.10.005
Cheng, A., Yan, H., Han, C., Chen, X., Wang, W., Xie, C., … Shi, X. (2014). Acid and alkaline hydrolysis extraction of non-extractabke polyphenols in blueberries optimisation by response surface methodology. Czech Journal of Food Sciences, 32(3), 218–225. Retrieved from https://doi.org/10.17221/257/2013-CJFS
Chitrakar, B., Zhang, M., Zhang, X., & Devahastin, S. (2020). Bioactive dietary Fiber powder from asparagus leaf by-product: Effect of low-temperature ball milling on physico-chemical, functional and microstructural characteristics. Powder Technology, 366, 275–282. Retrieved from https://doi.org/10.1016/j.powtec.2020.02.068
Dixit, S., Upadhyay, S. K., Singh, H., Sidhu, O. P., Verma, P. C., & K, C. (2013). Enhanced Methanol Production in Plants Provides Broad Spectrum Insect Resistance. PLoS ONE, 8(11), e79664. Retrieved from https://doi.org/10.1371/journal.pone.0079664
DomÃnguez-RodrÃguez, G., Marina, M. L., & Plaza, M. (2017). Strategies for the extraction and analysis of non-extractable polyphenols from plants. Journal of Chromatography A, 1514, 1–15. Retrieved from https://doi.org/10.1016/j.chroma.2017.07.066
Dorokhov, Y. L., Sheshukova, E. V., & Komarova, T. V. (2018). Methanol in Plant Life. Frontiers in Plant Science, 9. Retrieved from https://doi.org/10.3389/fpls.2018.01623
El gamouz, S., Bouzekri, O., Elidrissi, M., Amechrouq, A., & Choukrad, M. (2022). A Comparative Study of Phytochemical Profile of Different Solvents’ Effects on Total Phenolic Content and Antioxidant Activities of Various Parts of Halimium halimifolium. Journal of Chemistry, 2022, 1–10. Retrieved from https://doi.org/10.1155/2022/3847716
Fakhfakh, N., Jdir, H., Jridi, M., Rateb, M., Belbahri, L., Ayadi, M. A., … Zouari, N. (2017). The mallow, Malva aegyptiaca L. (Malvaceae): Phytochemistry analysis and effects on wheat dough performance and bread quality. LWT, 75, 656–662. Retrieved from https://doi.org/10.1016/j.lwt.2016.10.015
Fazelan, Z., Hoseini, S. M., Yousefi, M., Khalili, M., Hoseinifar, S. H., & Van Doan, H. (2020). Effects of dietary eucalyptol administration on antioxidant and inflammatory genes in common carp (Cyprinus carpio) exposed to ambient copper. Aquaculture, 520, 734988. Retrieved from https://doi.org/10.1016/j.aquaculture.2020.734988
Feng, Y.-X., Wang, Y., Chen, Z.-Y., Guo, S.-S., You, C.-X., & Du, S.-S. (2019). Efficacy of bornyl acetate and camphene from Valeriana officinalis essential oil against two storage insects. Environmental Science and Pollution Research, 26(16), 16157–16165. Retrieved from https://doi.org/10.1007/s11356-019-05035-y
Gondim, F. de L., Serra, D. S., & Cavalcante, F. S. Ã. (2019). Effects of Eucalyptol in respiratory system mechanics on acute lung injury after exposure to short-term cigarette smoke. Respiratory Physiology & Neurobiology, 266, 33–38. Retrieved from https://doi.org/10.1016/j.resp.2019.04.007
Gorinstein, S., Martin-Belloso, O., Katrich, E., Lojek, A., ČÞ, M., Gligelmo-Miguel, N., … Trakhtenberg, S. (2003). Comparison of the contents of the main biochemical compounds and the antioxidant activity of some Spanish olive oils as determined by four different radical scavenging tests. The Journal of Nutritional Biochemistry, 14(3), 154–159. Retrieved from https://doi.org/10.1016/S0955-2863(02)00278-4
Hanuš, L. O., & Hod, Y. (2020). Terpenes/Terpenoids in Cannabis: Are They Important? Medical Cannabis and Cannabinoids, 3(1), 25–60. Retrieved from https://doi.org/10.1159/000509733
Hlusicka, J., Loster, T., Lischkova, L., Vaneckova, M., Diblik, P., Urban, P., … Zakharov, S. (2019). Reactive carbonyl compounds, carbonyl stress, and neuroinflammation in methyl alcohol intoxication. Monatshefte Für Chemie - Chemical Monthly, 150(9), 1723–1730. Retrieved from https://doi.org/10.1007/s00706-019-02429-z
Huang, D., Ou, B., & Prior, R. L. (2005). The Chemistry behind Antioxidant Capacity Assays. Journal of Agricultural and Food Chemistry, 53(6), 1841–1856. Retrieved from https://doi.org/10.1021/jf030723c
Jiang, J., Shen, Y. Y., Li, J., Lin, Y. H., Luo, C. X., & Zhu, D. Y. (2015). (+)-Borneol alleviates mechanical hyperalgesia in models of chronic inflammatory and neuropathic pain in mice. European Journal of Pharmacology, 757, 53–58. Retrieved from https://doi.org/10.1016/j.ejphar.2015.03.056
Juergens, L. J., Racké, K., Tuleta, I., Stoeber, M., & Juergens, U. R. (2017). Anti-inflammatory effects of 1,8-cineole (eucalyptol) improve glucocorticoid effects in vitro: A novel approach of steroid-sparing add-on therapy for COPD and asthma? Synergy, 5, 1–8. Retrieved from https://doi.org/10.1016/j.synres.2017.08.001
Juergens, L. J., Tuleta, I., Stoeber, M., Racké, K., & Juergens, U. R. (2018). Regulation of monocyte redox balance by 1,8-cineole (eucalyptol) controls oxidative stress and pro-inflammatory responses in vitro: A new option to increase the antioxidant effects of combined respiratory therapy with budesonide and formoterol? Synergy, 7, 1–9. Retrieved from https://doi.org/10.1016/j.synres.2018.05.001
Juergens, U. (2014). Anti-inflammatory Properties of the Monoterpene 1.8-cineole: Current Evidence for Co-medication in Inflammatory Airway Diseases. Drug Research, 64(12), 638–646. Retrieved from https://doi.org/10.1055/s-0034-1372609
Kiyama, R. (2020). Nutritional implications of ginger: chemistry, biological activities and signaling pathways. The Journal of Nutritional Biochemistry, 86, 108486. Retrieved from https://doi.org/10.1016/j.jnutbio.2020.108486
Liu, Y., & Nair, M. G. (2012). Curcuma longa and Curcuma mangga leaves exhibit functional food property. Food Chemistry, 135(2), 634–640. Retrieved from https://doi.org/10.1016/j.foodchem.2012.04.129
Manas, D. (2014). The determination of vitamin C, total phenol and antioxidant activity of some commonly cooking spices crops used in West Bengal. International Journal of Plant Physiology and Biochemistry, 6(6), 66–70. Retrieved from https://doi.org/10.5897/IJPPB2014.0210
Mau, J.-L., Lee, C.-C., Yang, C.-W., Chen, R.-W., Zhang, Q.-F., & Lin, S.-D. (2020). Physicochemical, antioxidant and sensory characteristics of bread partially substituted with aerial parts of sweet potato. LWT, 117, 108602. Retrieved from https://doi.org/10.1016/j.lwt.2019.108602
Mendes, D., Oliveira, M. M., Moreira, P. I., Coutinho, J., Nunes, F. M., Pereira, D. M., … Videira, R. A. (2018). Beneficial effects of white wine polyphenols-enriched diet on Alzheimer’s disease-like pathology. The Journal of Nutritional Biochemistry, 55, 165–177. Retrieved from https://doi.org/10.1016/j.jnutbio.2018.02.001
Michiels, J. A., Kevers, C., Pincemail, J., Defraigne, J. O., & Dommes, J. (2012). Extraction conditions can greatly influence antioxidant capacity assays in plant food matrices. Food Chemistry, 130(4), 986–993. Retrieved from https://doi.org/10.1016/j.foodchem.2011.07.117
Moulazadeh, A., Kouhpayeh, S. A., Ranjbar, R., Dakhili Ardestani, A., Hekmat, M., Azarnia, S., & Najafipour, S. (2021). Antioxidant activity, phenolic and flavonoid content of Lawsonia inermis and Haplophyllum vermiculare. Physiology and Pharmacology, 25(3), 261–269. Retrieved from https://doi.org/10.52547/ppj.25.3.261
Olayé, T., Tchobo, F. P., Chabi, N., Koudokpon, H., Amoussa, A. M. O., Lagnika, L., … Sohounhloué, D. (2020). Bioactive compounds and antimicrobial potential of the roots extract of Anogeissus leiocarpa, a chewing stick used for oral care in Benin Republic. Journal of Pharmacognosy and Phytotherapy, 12(4), 71–80. Retrieved from https://doi.org/10.5897/JPP2020.0574
Olayemi, R. F., Jawonisi, I. O., & Samuel, J. A. (2018). Characterization and physico-chemical analysis of essential oil of Cymbopogon citratus leaves. Bayero Journal of Pure and Applied Sciences, 11(1), 74–81. Retrieved from https://doi.org/10.4314/bajopas.v11i1.14
Oliveira, G. L. S. (2015). Determinação da capacidade antioxidante de produtos naturais in vitro pelo método do DPPH•: estudo de revisão. Revista Brasileira de Plantas Medicinais, 17(1), 36–44. Retrieved from https://doi.org/10.1590/1983-084X/12_165
Pedro, A. C., Maurer, J. B. B., Zawadzki-Baggio, S. F., Ãvila, S., Maciel, G. M., & Haminiuk, C. W. I. (2018). Bioactive compounds of organic goji berry ( Lycium barbarum L.) prevents oxidative deterioration of soybean oil. Industrial Crops and Products, 112, 90–97. Retrieved from https://doi.org/10.1016/j.indcrop.2017.10.052
Pérez-Jiménez, J., & Saura-Calixto, F. (2006). Effect of solvent and certain food constituents on different antioxidant capacity assays. Food Research International, 39(7), 791–800. Retrieved from https://doi.org/10.1016/j.foodres.2006.02.003
Premram, A. S., Parki, A., Chaubey, P., Prakash, O., Kumar, R., Punetha, H., & Pant, A. K. (2018). Phytochemical Diversity Among Parts of Zingiber roseum Rosc. Extracts With Their Antioxidant and Antifungal Activity. Journal of Biologically Active Products from Nature, 8(4), 255–264. Retrieved from https://doi.org/10.1080/22311866.2018.1499439
Rana, Z. H., Alam, M. K., & Akhtaruzzaman, M. (2019). Nutritional composition, total phenolic content, antioxidant and α-amylase inhibitory activities of different fractions of selected wild edible plants. Antioxidants, 8(7), 203. Retrieved from https://doi.org/10.3390/antiox8070203
Rezaie, M., Farhoosh, R., Iranshahi, M., Sharif, A., & Golmohamadzadeh, S. (2015). Ultrasonic-assisted extraction of antioxidative compounds from Bene (Pistacia atlantica subsp. mutica) hull using various solvents of different physicochemical properties. Food Chemistry, 173, 577–583. Retrieved from https://doi.org/10.1016/j.foodchem.2014.10.081
Rosan, A. M. (2001). Organic Chemistry. A Brief Survey of Concepts and Applications. Journal of Chemical Education, 78(7), 881. Retrieved from https://doi.org/10.1021/ed078p881
Sessou, P., Farougou, S., Kaneho, S., Djenontin, S., Alitonou, G. A., Azokpota, P., … Sohounhloué, D. (2012). Bioefficacy of Cymbopogon citratus essential oil against foodborne pathogens in culture medium and in traditional cheese wagashi produced in Benin. International Research Journal of Microbiology, 3(12), 406–415. Retrieved from https://www.interesjournals.org/articles/bioefficacy-of-cymbopogon-citratus-essential-oil-against-foodborne-pathogens-in-culture-medium-and-in-traditional-cheese.pdf
Sevindik, E., Aydin, S., Apaydin, E., Okan, K., & Efe, F. (2019). Antibacterial and Antifungal Activities of Essential Oils from Laurus nobilis l. Flowers and Leaves Grown in the West Anatolian Area. Fresenius Environmental Bulletin, 28(9), 6555–6559. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20219911058
Sobreira Dantas Nóbrega de Figuêiredo, F. R., Monteiro, Ã. B., Alencar de Menezes, I. R., Sales, V. dos S., PetÃcia do Nascimento, E., Kelly de Souza Rodrigues, C., … Kerntopf, M. R. (2019). Effects of the Hyptis martiusii Benth. leaf essential oil and 1,8-cineole (eucalyptol) on the central nervous system of mice. Food and Chemical Toxicology, 133, 110802. Retrieved from https://doi.org/10.1016/j.fct.2019.110802
Sommano, S. R., Chittasupho, C., Ruksiriwanich, W., & Jantrawut, P. (2020). The Cannabis Terpenes. Molecules, 25(24), 5792. Retrieved from https://doi.org/10.3390/molecules25245792
Taiz, L., Zeiger, E., Moller, I. M., Murphy, A., & Oliveira, P. L. De. (2016). Fisiologia e Desenvolvimento Vegetal. (Artmed,Ed.) (6th ed.). São Paulo, Brasil. Retrieved from https://books.google.com.br/books?id=PpO4DQAAQBAJ&printsec=frontcover&hl=pt-BR&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
Takwa, S., Caleja, C., Barreira, J. C. M., Soković, M., Achour, L., Barros, L., & Ferreira, I. C. F. R. (2018). Arbutus unedo L. and Ocimum basilicum L. as sources of natural preservatives for food industry: A case study using loaf bread. LWT, 88, 47–55. Retrieved from https://doi.org/10.1016/j.lwt.2017.09.041
Tanvir, E. M., Hossen, M. S., Hossain, M. F., Afroz, R., Gan, S. H., Khalil, M. I., & Karim, N. (2017). Antioxidant Properties of Popular Turmeric (Curcuma longa) Varieties from Bangladesh. Journal of Food Quality, 2017, 1–8. Retrieved from https://doi.org/10.1155/2017/8471785
Vizzotto, M., & Pereira, M. C. (2011). Amora-preta (Rubus sp.): otimização do processo de extração para determinação de compostos fenólicos antioxidantes. Revista Brasileira de Fruticultura, 33(4), 1209–1214. Retrieved from https://doi.org/10.1590/S0100-29452011000400020
Xu, B. J., & Chang, S. K. C. (2007). A Comparative Study on Phenolic Profiles and Antioxidant Activities of Legumes as Affected by Extraction Solvents. Journal of Food Science, 72(2), S159–S166. Retrieved from https://doi.org/10.1111/j.1750-3841.2006.00260.x
Zhang, L., Virgous, C., & Si, H. (2019). Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals. The Journal of Nutritional Biochemistry, 69, 19–30. Retrieved from https://doi.org/10.1016/j.jnutbio.2019.03.009
Złotek, U., Mikulska, S., Nagajek, M., & Świeca, M. (2016). The effect of different solvents and number of extraction steps on the polyphenol content and antioxidant capacity of basil leaves (Ocimum basilicum L.) extracts. Saudi Journal of Biological Sciences, 23(5), 628–633. Retrieved from https://doi.org/10.1016/j.sjbs.2015.08.002